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Abstract 

Patterns of inequalities in housing energy efficiency and links with population risk factors in 

Tallinn, Riga and Vilnius  

The introduction of the EU Emission Trading System in the residential building sector poses a risk 

of increased energy poverty, particularly during the energy crisis. Energy poverty 

disproportionally affects different population groups due to the vulnerabilities to price changes 

and underlying inequalities of access to energy-efficient housing. Thus, monitoring the inequalities 

associated with housing energy efficiency is important for facilitating just energy transition. To 

evaluate the current patterns of inequalities in access to energy-efficient housing, the study 

develops a machine learning-based modelling framework to mitigate the limitations of the existing 

data availability on building-level energy performance. The study applied the developed 

methodology to assess the building energy performance in three cities – Tallinn, Riga, and Vilnius 

– to further identify the inequalities associated with access to energy-efficient housing between the 

different population groups. The study identified that within the context of the three capital cities, 

the existing inequalities related to access to energy-efficient housing can be understood through 

the prism of the spatial unequal distribution of occupational groups, particularly in relation to low 

occupational groups, and the housing market segmentation. 

Keywords: Energy efficiency, housing renovation, residential inequalities 

CERCS code: S230 Social Geography  
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Annotatsioon 

Eluasemete energiatõhususe ebavõrdsuse mustrid ja seosed elanikkonna riskiteguritega 

Tallinnas, Riias ja Vilniuses  

ELi heitkogustega kauplemise süsteemi kasutuselevõtt elamumajanduse sektoris kujutab endast 

energiavaesuse suurenemise ohtu, eriti energiakriisi ajal. Energiavaesus mõjutab erinevaid 

elanikkonnarühmi ebaproportsionaalselt, kuna nad on tundlikud hinnamuutuste suhtes ja neil on 

ebavõrdne juurdepääs energiatõhusale eluasemele. Seega on eluasemete energiatõhususega seotud 

ebavõrdsuse jälgimine oluline õiglase energia ülemineku hõlbustamiseks. Ebavõrdse 

energiatõhusale eluasemele juurdepääsu praeguste mustrite hindamiseks töötatakse käesolevas 

uurimistöös välja masinõppel põhinev modelleerimisraamistik, et leevendada olemasolevate 

hoonete energiatõhususe andmete kättesaadavust. Töös kasutati hoonete energiatõhususe 

hindamiseks väljatöötatud metoodikat kolmes linnas: Tallinnas, Riias ja Vilniuses, et teha kindlaks 

eri elanikkonnarühmade vahelised ebavõrdsused seoses juurdepääsuga energiatõhusale 

eluasemele. Töös leiti, et kolme pealinna andmete põhjal olemasolev ebavõrdsus seoses 

energiatõhusate eluruumide kättesaadavusega on seotud ametirühmade, eelkõige madalate 

ametirühmade ruumilise ebavõrdsuse ja eluasemeturu segmenteerituse kaudu. 

Märksõnad: Energiatõhusus, eluhoonete renoveerimine, elukoha ebavõrdus 

CERCS valdkond: S230 Sotsiaalne geograafia 
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1. Introduction 

In Energy For A Sustainable World (1987), energy is identified as one of the most important issues 

intertwined and connected with other global problems (Goldemberg et al., 1987, p. 35). As 

buildings represent 40% of the final energy use in the EU (European Parliament, 2012), the sector 

represents an important challenge in the facilitation of just energy transition.  

The three main tenets within the energy justice framework are distributional, procedural, and 

recognition justice (McCauley et al., 2014). Particularly within distributional justice falls the 

question of energy poverty (Jenkins et al., 2016), which describes the lack of accessible essential 

energy services (Reddy et al., 2000, p. 44). The spatiality of energy poverty, however, has not been 

sufficiently examined (Bouzarovski and Simcock, 2017). Furthermore, the existing inequalities in 

income (Bouzarovski and Simcock 2017), gender (Petrova and Simcock, 2021), levels of 

urbanisation (Aristondo and Onaindia, 2018),  ownership status (Aristondo and Onaindia, 2018), 

race and ethnicity (Dogan et al., 2022), and household composition (Boemi and Papadopoulos, 

2019) further exacerbate energy poverty and inequalities related to energy consumption and 

production.  

The topics of inequalities in energy distribution and energy poverty are significantly understudied 

in the contexts of Estonia, Latvia, and Lithuania. This is particularly important for the policy 

context of Estonia, as energy poverty is not mentioned in the National Energy and Climate Plan as 

a significant issue (Directorate of European Commission, 2023), even though in 2020, 22.6% of 

the population experienced a high share of energy expenditure in their income (Energy Poverty 

Advisory Hub, 2022). And even as in the case of Latvia and Lithuania,  where energy poverty is 

considered an important energy issue in the existing planning documents, the measures of its 

alleviation are insufficient in addressing it. As housing represents the primary area of interactions 

with energy poverty, energy inequalities in the study are addressed through the inequalities of 

access to energy-efficient housing. 

Energy performance certificates represent a unified framework for measuring the energy efficiency 

of a building, developed by the European Parliament and implemented at the national level 

(European Parliament, 2003). However, the existing data from energy performance certificates are 

not available for the substantial segment of the building stock in Estonia, Latvia, and Lithuania. 

Different methodological frameworks were developed to model building energy performance 

using machine-learning-based techniques (Seyedzadeh et al., 2018), yet not applied for the urban-

level energy performance predictions in the context of the Baltic counties. Thus, methodologically, 

the work aims to develop a machine-learning-based methodology for urban-level building energy 

performance prediction using various open data sources based on energy performance certificate 

data. Furthermore, the study aims to identify the existing demographic, ethnic, and occupational 

inequalities related to the energy efficiency of housing based on the predicted and actual data for 

Tallinn, Vilnius, and Riga. 

The work defines the following research questions: 
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1. Which algorithm is the most suitable for modelling the energy performance of buildings 

based on the existing data availability and limitations? How does the application of the 

developed machine-learning-based modelling framework compare between the cities? 

2. What distributional patterns of energy-efficient housing can be observed between the 

population groups in the three capital cities within the given housing and urban contexts? 

Are there only cases of identified inequalities in particular country contexts, or are the 

patterns shared between all three capital cities? 

3. How are the specific identified distributional patterns addressed in the existing national 

policies of energy efficiency and energy poverty? If not sufficiently addressed, what types 

of policy actions can be used to mitigate the identified trends of inequalities in the energy 

efficiency of housing?  
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2. Literature review 

2.1. Energy poverty 

Six primary energy vulnerability factors contribute to energy poverty: access, affordability, 

flexibility, energy efficiency, household needs, and existing practices (Bouzarovski and Petrova, 

2015). All the factors are encompassed in its definition. As an overarching concept, energy poverty 

has been defined as ‘the absence of sufficient choice in accessing adequate, affordable, reliable, 

high-quality, safe, and environmentally benign energy services to support economic and human 

development’ (Reddy et al. 2000, 44 p). The shift of primary focus changes from the challenges 

of energy accessibility in the developing world to more prominent affordability issues in the 

developed world (Reddy et al., 2000). 

Within the context of the European Union (EU), energy poverty is described in the Energy 

Efficiency Directive as ‘a household’s lack of access to essential energy services, where such 

services provide basic levels and decent standards of living and health, including adequate heating, 

hot water, cooling, lighting, and energy to power appliances… caused by a combination of factors, 

including at least non-affordability, insufficient disposable income, high energy expenditure and 

poor energy efficiency of homes’ (European Parliament, 2023a). Even though both definitions are 

focused on the absence of adequate energy services, the legal definition in the European Union is 

centred around the affordability of energy services at the household level. 

Some scholars propose applying the energy poverty definition to include only low-income 

households (Mulder et al., 2023). However, other studies point out that middle-income households 

also experience a relatively high incidence of energy poverty, with a significant variation in 

incidence values between the indicators used (Maier and Dreoni, 2024). This reveals the overall 

heterogeneity in energy poverty measurement approaches, requiring a more in-depth assessment 

of the indicators used. 

2.1.1. Energy poverty indicators 

The multi-dimensionality of energy poverty results in three indicators based on the method: 

expenditure, consensual, and direct measurement approaches (Thomson et al., 2017). Expenditure 

approaches consider criteria such as income, housing, or energy costs (Rodriguez-Alvarez et al., 

2021). Consensual approaches evaluate the self-reported perception of energy poverty by 

indicators such as indoor housing conditions (Thomson et al., 2017). Direct measurement 

approaches are characterised by evaluating the actual energy use of energy services (Kahouli and 

Okushima, 2021). The following section will address the examples of three indicator categories. 

Even though each indicator category is analysed separately, it is important to note that the 

concentration on a single indicator of energy poverty results in exclusion, as many indicators do 
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not significantly overlap between the households identified as energy-poor (Deller et al., 2021). 

Furthermore, focusing on one energy poverty indicator over another can result in significantly 

different budgetary and distributional implications in targeted policy actions (Maier and Dreoni, 

2024), as the different indicators can highlight different population and housing segments (Barrett 

et al., 2022). 

Expenditure approaches for energy poverty measurement 

As mentioned above, expenditure energy poverty indicators compare housing and energy costs to 

income (Oliveira Panão, 2021; Rodriguez-Alvarez et al., 2021). According to Liddell et al. (2012), 

the first definitions of energy poverty primarily examined energy expenditure rates. This included 

the 10% indicator created by Brenda Boardman in the 1991 book ‘Fuel Poverty’ (Liddell et al., 

2012), which takes the double median of weekly expenses on energy based on the 1988 Family 

Expenditure Survey for UK households (Liddell et al., 2012; Herrero, 2017). The 10% indicator 

is often criticised for not properly reflecting energy poverty rates (Yip et al., 2020), especially 

because of its high sensitivity to energy price fluctuations (Hills, 2012, p. 30). The use of the 

double median approach, however, mitigates the issues related to the use of the 10% indicator as 

the indicator becomes relative to the current situation in the energy market (Croon et al., 2023). 

In 2012, a new indicator for energy poverty evaluation – Low Income and High Costs (LIHC) – 

was proposed to mitigate the challenges created using the 10% indicator (Hills, 2012, p. 32). The 

main difference between the indicators lies in the existence of two energy poverty gaps: energy 

cost and income levels (Hills, 2012, p. 34). To count a household energy-poor, their energy 

expenditure must be higher than the national median, and their total available income without 

energy costs must be lower than 60% of the national median (Costa-Campi et al., 2019). Even 

though it is based on the context of the UK, the use of LIHC indicator has expanded to study 

energy poverty in different countries and regions (Costa-Campi et al., 2019; Oliveira Panão, 2021; 

Dogan et al., 2022; Kalinowski et al., 2024). The next iteration of the indicators applied in 

evaluating energy poverty rates in the UK focused on the energy efficiency of housing instead of 

energy costs (Croon et al., 2023). 

Consensual approaches for energy poverty measurement 

Consensual approaches to energy poverty measurement focus on asking households whether the 

energy is affordable and whether housing conditions are benign (Thomson et al., 2017). 

Furthermore, consensual approaches are used more for cross-country energy poverty assessments 

and comparisons (Thomson et al., 2017), particularly by utilising data from the EU statistics on 

income and living conditions (EU-SILC) as the basis for comparative studies in Europe (Makridou 

et al., 2024; Śmiech et al., 2025). The three primary indicators for energy poverty in EU-SILC data 

include the ‘inability to keep home adequately warm’, ‘arrears on utility bills’, and ‘presence of 

leak, damp, rot in the dwelling’ (Halkos and Kostakis, 2023). For instance, the indicator of 

‘inability to keep home adequately warm’ was used by Makridou et al. (2024) in a pan-European 
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longitudinal study on factors associated with energy poverty, resulting in the identification of 

positive correlations between energy poverty and levels of urbanisation, overcrowding, electricity 

prices, and gross domestic product value on the national level. 

Other studies employ own surveys and energy poverty indicators, adapting to the local context 

(Ntaintasis et al., 2019). The survey developed by Ntaintasis et al. (2019) for the Attica region in 

Greece utilised additional perceptual energy poverty indicators such as ‘inability to keep home 

adequately cool during summer’, ‘health problems that can be attributed to poor indoor 

conditions’, and ‘restriction of other essential needs of the household due to the expenditures 

required for adequately heating the residence’. Another study in Nova Scotia, Canada, used 

additional indicators, such as the ability to control indoor temperature during winter and summer 

and having difficulty sleeping because the dwelling was too cold, to evaluate energy poverty and 

calculate expenditure-based indicators (Ntaintasis et al., 2019; Riva et al., 2024).  

Direct measurement approaches for energy poverty measurement 

Direct measurement approaches attempt to measure the sufficiency of energy services through 

indoor building conditions such as indoor temperature measurements (Thomson et al., 2017).  Yun 

et al. (2024) propose an energy poverty monitoring system, which includes sensor nodes for dry-

bulb temperature, relative humidity, air velocity, and black bulb temperature to monitor the 

thermal indoor environment for energy-poor households in South Korea. A similar system with a 

continuous real-life measurement system was developed and tested in Getafe, Spain (López-

Vargas and Ledezma-Espino, 2023). The justification for applying frameworks measuring energy 

poverty through thermal comfort and, subsequently, indoor temperature stems from the existing 

guidance of the World Health Organisation on the home temperature range (Ormandy and Ronique 

Ezratty, 2011). 

Thomson et al. (2017)  note the strong lack of direct measurement data at the European level and 

its national-level scarcity. Furthermore, within the context of Central and Eastern Europe, the 

primary pillar of energy poverty is associated with energy costs rather than indoor temperatures 

due to the use of district heating (Tirado Herrero and Ürge-Vorsatz, 2012). Additionally, the notion 

of thermal comfort has significant variation between the different countries and households (Nicol 

et al., 1999; Nicol and Roaf, 2017), increasing the overall challenge of evaluation of energy 

poverty through indoor temperatures. 

2.1.2. Hidden energy poverty 

In the conventional indicators related to energy poverty, an often-overlooked issue is the limitation 

of household energy consumption to reduce costs (Cong et al., 2022). The practice of restricting 

one's energy consumption below the level of basic household needs is called ‘hidden energy 

poverty’ (Meyer et al., 2018). Crucially, many households practising restrictive behaviour are 

usually not considered energy-poor by expenditure-related metrics and, thus, not eligible for some 
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of the energy poverty alleviation measures (Cong et al., 2022; Eisfeld and Seebauer, 2022). Within 

the context of Central and Eastern Europe, however, a direct link between income poverty and 

exposure to hidden energy poverty was identified (Karpinska and Śmiech, 2020b). A variety of 

different metrics are used to measure hidden energy poverty, which are summarised in Table 1. 

Table 1. Methodologies and indicators used to evaluate hidden energy poverty. 

Country Approach Indicators Study 

Australia Consensual 

Underconsumption entailing privation 

Incidental masking 

Disguise by coping mechanisms 

Intentional concealment 

Failure to recognise the health risks of cold 

homes 

Ignored energy vulnerability 

Willand et al. (2023) 

Austria Consensual 

Heating up to a comfortable temperature without 

paying attention to the costs. 

Sitting close to the radiator to keep warm. 

Putting on a pullover first instead of turning on 

the heating. 

Turning off the heating when leaving the flat. 

Closing doors between heated and not heated 

rooms. 

Eisfeld and Seebauer 

(2022) 

Italy Expenditure 
Combination of energy expenditure and poverty 

rates 
Betto et al. (2020) 

Poland Expenditure 

Multiple linear regression model with 

categorical values for the living environment, 

housing conditions, household structure, and 

socio-economic situation. 

Karpinska and Śmiech 

(2020a) 

Spain Expenditure 
Required energy expenditure 

Low absolute energy expenditure indicator 
Barrella et al. (2022) 

USA 
Direct and 

consensual 

Energy equity gap (based on the inflection 

temperature) 
Cong et al. (2022) 
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2.1.3. Characteristics of energy poverty 

As stated by Bouzarovski and Simcock (2017), domestic energy deprivation is strongly impacted 

by household incomes. In Ireland, income poverty was strongly associated with measured energy 

poverty indicators (Barrett et al., 2022).  Furthermore, a strong link between regional income 

inequality and energy poverty was observed in Italy, which further drove variation in the 

experience of energy poverty based on household income levels (Bardazzi et al., 2021). A similar 

outcome was identified in the global energy poverty study, which identified national income 

inequality as an aggravating factor for energy poverty within all population groups (Igawa and 

Managi, 2022). In the case of Poland,  the experience of energy poverty was linked to increased 

chances of poverty, with a 15.1% chance of becoming poor after experiencing energy poverty and 

an 11.7% chance of becoming severely poor (Karpinska and Śmiech, 2021). A similar outcome 

was also identified in Germany (Drescher and Janzen, 2021). The different patterns of energy 

vulnerability are further replicated through the adaptive behaviour to energy poverty, facilitating 

the vicious circle of energy vulnerability (Bouzarovski and Simcock, 2017). 

The urbanisation rate has a negative impact on energy poverty rates. (Roberts et al., 2015; 

Bouzarovski and Tirado Herrero, 2017; Aristondo and Onaindia, 2018; Drescher and Janzen, 2021; 

Karpinska and Śmiech, 2021) The study of the distribution of energy-poor households in Poland, 

Czechia, and Hungary found that the highest proportions of energy-poor households were in small 

to medium-sized towns due to the lower accessibility of building renovation programmes yet 

facing the same legal and technical issues of the building stock (Bouzarovski and Tirado Herrero, 

2017). In another study in Poland, one of the key energy-poor profiles was of medium-sized 

families living in detached housing in rural areas (Karpinska and Śmiech, 2021). A similar pattern 

was observed in Spain, where lower population density areas have a higher proportion of energy-

poor populations (Aristondo and Onaindia, 2018). In the study by Drescher & Janzen, 2021, rural 

households' increased chance of energy poverty was further attributed to the differences in grid 

access fees compared to their urban counterparts. Additionally, the lack of diverse heating and fuel 

supplier options significantly increases energy prices' effect on the rural population's energy 

poverty rates (Roberts et al., 2015). 

Women take a disproportionate amount of responsibility in managing the consequences of energy 

poverty, which results in worse well-being and the need for additional labour (Petrova and 

Simcock, 2021). Furthermore, the evidence from Spain shows that women-led households have a 

higher chance of being energy-poor (Aristondo and Onaindia, 2018). Robinson (2019) notes five 

dimensions of gendered vulnerability to energy poverty, which include exclusion from a 

productive economy, susceptibility to negative mental health outcomes, a lack of social protection, 

coping and helping others to cope, and unpaid caring or domestic roles. Furthermore, these 

dimensions significantly overlap with experiences of income poverty (Robinson, 2019). Overall, 

the assessment of Nguyen and Su (2021) in 51 developing countries concluded that reducing 

energy poverty could significantly improve women's socio-economic rights. However, as Listo 
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(2018) states, the discourse on gender and energy poverty continues to construct women and 

gender equality in a problematic way, particularly in Global South, and ignores queer or 

transgender identities or gendered inequalities between women. 

In Central and Eastern Europe, one-person households dominate in assessing energy poverty 

profile distribution (Karpinska and Śmiech, 2023), as well as in other countries such as Greece 

(Boemi and Papadopoulos, 2019), Germany (Drescher and Janzen, 2021), and Canada (Riva et al., 

2021). Furthermore, other research has noted that single-parent households (Drescher and Janzen, 

2021; Mulder et al., 2023) or single pensioner households (Stojilovska et al., 2021) were even 

more prone to energy poverty. In the study of energy poverty in one-person households in Poland, 

the income level was the most significant factor in assessing energy poverty (Piekut, 2020). 

Furthermore, the thermal comforts of a one-person household vary greatly based on the 

occupational status and level of education (Piekut, 2020). Drescher and Janzen (2021) state that 

higher energy poverty rates in one-person households could be attributed to lower household 

income possibilities, lack of cost sharing, and economic scale in domestic energy services. 

Tenants are more prone to energy poverty than homeowners (Aristondo and Onaindia, 2018; 

Taltavull de La Paz et al., 2022). In Spain, the risk of being energy-poor is almost twice as high as 

for homeowners (Taltavull de La Paz et al., 2022). Similarly, in Australia, the neighbourhoods 

with the higher share of rental properties show higher risks of energy stress (Willand et al., 2020). 

Furthermore, in France, the chance to live in an energy-inefficient dwelling was significantly 

higher for tenants than for owners occupying their own dwellings, and their participation in 

building renovation projects was lower (Charlier, 2014). The potential difference between the 

willingness to invest in energy efficiency improvements lies in the ‘landlord-tenant problem’ 

(Ambrose, 2015; Petrov and Ryan, 2021), which is further characterised by split incentives 

between the two groups (International Energy Agency, 2007). In building renovation and energy 

efficiency, split incentives between the landlords and tenants are characterised by the willingness 

of landlords to minimise capital costs and the willingness of tenants to maximise energy efficiency 

to save on energy costs (International Energy Agency, 2007). Furthermore, in Ireland, a larger 

difference in energy efficiency levels between rental and non-rental properties was observed in 

areas with a bigger scarcity of rental properties compared to the rest of the country (Petrov and 

Ryan, 2021). 

In the context of the USA, a link between race and energy poverty was identified, with African-

American households having a higher chance of being energy-poor (Dogan et al., 2022). 

Additionally, indigenous populations in Mexico experience higher energy poverty rates compared 

to non-indigenous households (Guzmán-Rosas, 2022).  A similar phenomenon was observed in 

Kansas City, Missouri, between the racial and ethnic minority-headed households, and increased 

energy use intensity, describing lower energy efficiency (Reames, 2016). Furthermore, in 

Australia, neighbourhood-level ethnic diversity was positively associated with energy poverty, and 

social inclusion policies were outlined as the potential mitigation strategy for energy poverty 
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(Awaworyi Churchill and Smyth, 2020). The study by Reames (2016) notes that the past 

institutionalised residential segregation is further translated into current energy-related disparities. 

The graphical summary of the identified characteristics associated with increased energy poverty 

is demonstrated in Figure 1. 

 

Figure 1. Characteristics associated with an increased chance of energy poverty based on the 

literature review. 

2.1.4. Tackling energy poverty 

In the energy policy of many European countries, energy poverty is not considered an issue in the 

energy field and is tackled exclusively through social policy linked to general income poverty 

(Bouzarovski et al., 2021). This further creates confusion about the primary responsible 

governmental body to oversee the issue, as observed in many European countries (Bouzarovski et 

al., 2021; Feenstra et al., 2021; Koďousková and Bořuta, 2022). The confusion reduces the overall 

potential of action as some of the key policy mitigation strategies for energy poverty include 

increasing energy efficiency and regulating energy prices, which have a significantly positive 

impact on reducing energy poverty (Rodriguez-Alvarez et al., 2021). Public bodies at different 

levels are responsible for actions related to energy poverty, which further increases the challenges 

of the implementation of an integrated policy approach (Seebauer et al., 2019).  

The social policy approaches focus on general income redistribution and include the support of 

mitigation of energy costs (Stojilovska et al., 2023). Within the regional Italian context, the overall 

income redistribution policies targeting income inequality alleviation were suggested as a possible 

energy poverty alleviation method (Bardazzi et al., 2021). Furthermore, Stojilovska et al. (2023) 

note the evermore-increasing role of different strategies in the labour market, social protection, 

and health fields to mitigate the health and economic impacts of energy poverty in the world of 

severe climate change impact. 
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Energy policy approaches focus on technical support to mitigate energy poverty (Stojilovska et al., 

2023). For instance, the study of Simionescu et al. (2023) confirms that, in the long run, the 

increase in renewable energy consumption reduces the arrears of utility bills and thus contributes 

to reducing energy poverty.  However, the initial accessibility of such interventions is low for low-

income households due to the initial investments (Simionescu et al., 2023), and other studies point 

out that renewable energy systems currently do not mitigate energy poverty (Makridou et al., 

2024). Furthermore, the assessment of low-income households in Greece revealed that 46.7% of 

households could not afford any energy efficiency measures to facilitate minimal thermal comfort 

(Boemi and Papadopoulos, 2019). 

Overall, most current energy policy approaches to tackling energy poverty are largely inaccessible 

to energy-poor households (Koďousková and Bořuta, 2022). Property prices rising due to the 

improvements in housing’s energy efficiency can make it unaffordable for low-income residents 

and renters (Seebauer et al., 2019). The existing notions of energy poverty-related stigmatisations 

and political non-recognition significantly affect the reproduction of the distributive inequalities 

in energy affordability and further alienation from getting support (Bouzarovski and Simcock, 

2017). This describes the overall emerging issues in the field of energy transition, as it creates 

several issues associated with distributive energy justice. 

2.1.5. Emerging issues  

In many instances, the facilitation of just energy transition was connected to increased inequalities. 

From the point of view of benefitting from the support mechanisms, wealthier households and 

regions received more financial support to improve energy efficiency and increase the capacities 

of renewable energy generation. This, in return, enables further facilitation of gentrification caused 

by investments into sustainable urban development and strengthens the inaccessibility of energy 

transition for underserved individuals and communities. 

Who is the main beneficiary? 

The facilitation of building renovation activities creates additional difficulties for low-income 

households, potentially reducing their overall participation in climate and energy transition 

(Grossmann, 2019; Umit et al., 2019; Albrecht and Hamels, 2021; Bardazzi et al., 2021). An 

assessment of 22 European countries by Umit et al. (2019) identified a strong link between income 

and investment in energy efficiency technologies. Wealthier individuals were more likely to invest 

than low-income individuals, who tend to save energy through less use of existing technologies 

(Umit et al., 2019). Additionally, the use of energy efficiency subsidies by wealthier households 

was observed in the context of Italy (Bardazzi et al., 2021). A similar notion of the reproduction 

of the existing income inequalities through the distribution of energy efficiency subsidies was 

observed in Australia (Willand et al., 2020). This further adds to the overall notion of building 

renovation’s unaffordability, as described by the analysis of Albrecht and Hamels (2021), which 
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found that approximately 50% of homeowners cannot afford renovation measures to achieve 2050 

climate policy goals in the Flemish region of Belgium. As renovation activities are often 

economically net-negative for the residents, the overall affordability of housing, especially for 

low-income households, is threatened, requiring economising on other vital human activities 

(Grossmann, 2019). 

Particularly in the context of Central and Eastern Europe, the allocation of building renovation 

grants followed the existing regional disparities (Turcu, 2017; Lihtmaa et al., 2018; Frantál and 

Dvořák, 2022). The analysis of Estonia's building renovation grant programme revealed a strong 

relationship between regional development indicators, particularly higher local real estate prices 

and grant distribution, exacerbating existing regional inequalities (Lihtmaa et al., 2018). Similarly, 

a significantly higher share of building renovation grants was allocated to Bucharest compared 

with the rest of Romania, even though most of the housing in-need of energy efficiency 

improvement is outside the capital city (Turcu, 2017). Frantál and Dvořák (2022) note a stark 

difference in the New Green Savings Programme use between the different districts in Czechia, 

with a positive correlation between the subsidy allocation and indicators of territorial stability and 

socio-cultural capital. Furthermore, the study noted the potential misuse of the programme’s 

funding in more affluent areas for building and purchasing new housing (Frantál and Dvořák, 

2022). 

Building renovation in rental housing posits additional risks associated with housing affordability 

(Polanska et al., 2024). In an assessment by von Platten et al. (2021), the existing notions of the 

Renovation Wave, particularly regarding targeting the worst-performing buildings, were 

challenged. The authors argue that facilitating renovation activities in this housing segment can 

threaten the already depleted stock of affordable housing, as the two overlap significantly (von 

Platten et al., 2021). Furthermore, the notion of renovictions – eviction of tenants to perform 

renovations – has been observed in the different contexts of residential energy efficiency 

improvements as a practice of subsequent rent increases (Grossmann and Huning, 2016; 

Woodhall-Melnik, et al., 2025). Polanska and Richard (2021) note the three primary practices of 

renovictions by housing companies in Sweden – silencing, surveilling, and dividing collective 

demands – aimed at nullifying collective resistance and neglecting tenants' participation in the 

renovation projects' decision-making. The existing notions further highlight the two-edge issues 

of renters concerning increased risk of displacement due to renovations and benefitting less from 

the existing energy efficiency improvements, resulting in higher energy consumption and costs, as 

highlighted by Willand et al. (2020). 

Green gentrification 

Sustainable development of urban environments has been linked to gentrification and displacement 

(Dooling, 2009; Checker, 2011).  Quinton and Nesbitt (2024) state that even though many terms, 

such as green, environmental, ecological, climate, carbon, or resilience gentrification, exist, they, 
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in practice, describe different types of interventions in the built environment associated with 

climate impact mitigation or adaptation. Rice et al. (2020) note that this form of gentrification is 

an outcome of urban carbon politics, which results in the rejection of classic forms of 

suburbanisation by middle- and upper-income residents in favour of urban areas with access to 

low-carbon infrastructure.  

The case study of the Letnica district urban regeneration programme in Gdansk, Poland, shows 

that even by itself, potential energy savings from building renovation activities can become a 

financial accumulation strategy benefiting both owners and housing investors and developers 

driving gentrification in the area (Bouzarovski et al., 2018). Similarly, Gould and Lewis (2021) 

describe resilience in coastal areas as the financial accumulation strategy in the communities 

affected by hurricanes, where the level of wealth determines the possibilities of resilient building 

(re)construction. They further state that employing private solutions to a public problem makes 

resilience a privilege (Gould and Lewis, 2021). Blok (2020) compares green gentrification in 

Copenhagen, Denmark, and Surat, India, and further highlights the underlying local and global 

inequalities. 

However, the notions of gentrification can also stem from the interactions between energy 

infrastructure, residents, and emerging other forms of energy users. In the Bates et al. (2024) study, 

the residents of the Holyoke, Massachusetts community raised concerns associated with renewable 

energy projects considering high-performance computer centre facility development in the area 

without direct benefits to them and risks associated with electricity cost increase. In this light, 

Libertson et al. (2021) describe energy gentrification as a form of gentrification where competition 

over land is replaced with competition over energy, including individuals, industries, and other 

energy-intensive businesses. In the context of ever-increasing reliance on data centres for hi-tech 

services, the development of digital infrastructure can further exacerbate residential inequalities 

and cause displacement (Baumann et al., 2024). 

2.2. Policy context  

2.2.1. EU policy framework 

Within the policy framework of the European Union (EU), the Energy Efficiency Directive (EED) 

and the Energy Performance of Buildings Directive (EPBD) are two cornerstones for actions in 

the field of building renovation and assessment of energy poverty. Additional instruments, such as 

the Social Climate Fund, were developed due to the ever-increasing need to enable the 

participation of vulnerable population groups in just energy transition, particularly in light of the 

EU Emission Trading System expansion to the residential sector (European Parliament, 2023b). 

The EED is a key policy document establishing the overall energy efficiency framework in the 

EU. EED is the formalisation of the Presidency Conclusions of the Brussels European Council in 
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2007, which established the 20% reduction goal in greenhouse gas (GHG) emissions and energy 

consumption of the Union (Council of the European Union, 2007). The process resulted in the 

facilitation of EED in 2012. As a key implementation step of EED, the Member States were 

obligated to create and submit the National Energy Efficiency Action Plans to achieve a cumulative 

reduction in energy consumption (European Parliament, 2012). After the Paris Agreement on 

climate change within the ‘Clean Energy for all Europeans’ package’, EED was revised to facilitate 

a binding energy efficiency target for 2030 and the requirement for the Member States to submit 

National Energy and Climate Plans for 2030 (European Parliament, 2018b). Within the EU Green 

Deal and REPowerEU plan, the EED text was revised as a reaction to the need for more rapid 

climate action and reduced fossil fuel dependency from Russia (European Parliament, 2023a). The 

newest revision of EED formalised the ‘energy efficiency first’ principle, which mandates taking 

energy efficiency as the first option in any decision (European Parliament, 2023a). The facilitation 

of EED goals in the residential building efficiency sector is supported via the EPBD. 

As the overarching building energy efficiency framework facilitation document, EPBD emerged 

in 2002, laying the foundation for energy performance certificates (EPC) and minimum 

performance requirements for new and existing buildings. Crucially, Article 7(1) of EPBD 

required the availability of EPC to the end-users (European Parliament, 2003). The Presidency 

Conclusions of the Brussels European Council in 2007 facilitated the preparation of the recast of 

EPBD in 2010. Key additions to the building energy performance framework consisted of 

conceptualising nearly zero-energy buildings, identifying and providing financial incentives for 

building renovation, and reducing market barriers (European Parliament, 2010). In the EPBD 

amendment of 2018, long-term renovation strategies were established for the Member States in 

Article 2(1) (European Parliament, 2018a). Article 2(1) of 2018 EPBD recast formalised the 

requirements for energy poverty alleviation by the Member States via long-term renovation 

strategies (European Parliament, 2018a). To reach the objectives of the European Green Deal 

facilitated via the Renovation Wave strategy, the ‘Fit For 55’ legislative package, and the 

REPowerEU plan, the 2024 EPBD recast proposal was presented to accelerate the reduction of 

GHG and energy poverty in the region by achieving a zero-emission building stock by 2050. The 

2024 EPBD recast expanded the use of renewable energy in buildings, improved the framework 

of national building renovation plans, set the monitoring framework, set the minimum energy 

performance requirements for buildings, and expanded the concept of one-stop shops for building 

renovation (European Parliament, 2024). The newest EPBD recast integrated more aspects of 

energy poverty alleviation. 

The 2024 EPBD recast has introduced several elements targeted at energy poverty. Article 3 on 

the National Building Renovation plans was updated to include vulnerable households and goals 

for reducing energy poverty (European Parliament, 2024). Furthermore, the Commission will 

evaluate the National Building Renovation plans based on their ability to reduce energy poverty 

to the levels set in the planning documents. Article 9 formalised the need to increase the technical 
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support for vulnerable households to meet the minimum energy performance standards (European 

Parliament, 2024). Article 17 mandates the creation of a link between the financial measures for 

renovation and vulnerability (European Parliament, 2024). Furthermore, it formalises the 

prioritisation of energy-poor and vulnerable populations as the beneficiaries of financial incentives 

created for the renovation. Within Article 18, the one-stop shops shall offer a dedicated service for 

vulnerable households (European Parliament, 2024). The overall framework of EPBD recast 

integrates different criteria and parameters for energy poverty evaluation. However, the current 

design puts the obligation of designing strategies for energy poverty alleviation, which will result 

in an asymmetry of action between the Member States as there is no binding goal for energy 

poverty reduction. 

2.2.2. National policy frameworks 

Estonia 

On August 17, 2023, the updated Estonian National Energy and Climate Plan (NECP) for 2030 

was submitted. The development process included the Ministry of Economic Affairs and 

Communication, the Ministry of Environment, and the Ministry of Rural Affairs, with 106 

measures, out of which 44 were related to the energy and building sectors (Directorate of European 

Commission, 2023). 

In the building renovation, the plan addresses the target goals of the Estonian Long-term Strategy 

for the Renovation of Buildings (REKS) and the Estonian Energy Policy Development Plan 

(ENMAK) (Directorate of European Commission, 2023). The REKS goals are set as the square 

metres of the area of renovated buildings with preliminary goals for each building type and a 5-

year period between 2021 and 2050. The overall notion of the renovation volumes proposed by 

REKS suggests an immediate acceleration of retrofitting activities from 2021 onward for multi-

apartment buildings. At the same time, a similar acceleration pattern is noticed only after 2031 for 

both single-family housing and private non-residential buildings (Majandus- Ja 

Kommunikatsiooni Ministeerium, 2020). 

REKS mentions energy poverty as not a widespread problem in Estonia, yet acknowledges the 

need for additional support to vulnerable households in participating in building renovation 

projects. The timing of REKS preparation is important, as it was published in 2019. Further 

pandemic and attempted invasion of Ukraine increased energy poverty rates by increasing energy 

consumption, disrupting energy supply chains, and due to the need to change the fossil fuel import 

structure (Bórawski et al., 2022). With this context, the Estonian Resilience and Recovery Plan 

has proposed an additional Housing Investment Fund (HIF) to address the issues that vulnerable 

households face in participating in the renovation projects.  HIF will combine public and private 

financing sources to bring renovation loans to the residents of multi-apartment buildings with low 

property value and limited capacity for action (Directorate of European Commission, 2023). Due 
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to the long loan period of 30 years and low interest rates at around 2-3%, it is envisaged as a 

suitable solution for lower socio-economic classes (Riigi Tugiteenuste Keskus, 2023). No explicit 

mentions of social vulnerability were observed outside the proposed financing solutions within 

Estonia's planning documents. Furthermore, the Estonian NECP does not mention energy poverty 

as an issue. 

Latvia 

Compared to Estonia and Lithuania, Latvia's national government did not submit an updated NECP 

draft in 2023 as envisioned in the 2023 recast of EED and developed it only by July 2024 (Latvijas 

Republikas Klimata un enerģētikas ministrija, 2024). The Latvian NECP was finalised on May 7, 

2019. The Ministry of Economy led the development of the planning document together with the 

Ministry of Regional Development and Environmental Protection, Ministry of Transportation, and 

Ministry of Agriculture (Ministru Kabinets, 2019). In contrast, the update was led by the Ministry 

of Climate and Energy (Latvijas Republikas Klimata un enerģētikas ministrija, 2024). 

In the Latvian NECP, three strategic pathways are envisaged: reduction of energy resource 

consumption, energy efficiency improvements in housing and small housing complexes, and the 

creation of long-term solutions for Latvian housing estate improvements and the integration of 

additional financing. In all the goals, a strong focus on ESCO service development and the need 

for additional refinancing solution integration was stated, even though the market of ESCO 

services in Latvia is underdeveloped, with only one organisation performing such work. The 

support of existing instruments, such as the ALTUM grant programme for building renovation, 

was stated within the Long-term renovation strategy (Ministru kabinets, 2020). 

Energy poverty is defined in Article 1(101) of the Republic of Latvia Energy Law since February 

2, 2021. Furthermore, Section 17 of the Energy Law is dedicated to energy poverty. It defines 

energy-poor households as “households that are considered poor or low-income that receive 

financial support for housing expenses” or households that rent social housing (Latvijas Vēstnesis, 

2024). Article 121 further requires the national agencies and legislative bodies to prioritise and 

consider energy-poor populations in energy efficiency policies. Yet the legal framework does not 

support regional and local level governance, which operates with energy poverty and energy-poor 

populations more directly. The 2019 Latvian NECP has already addressed energy poverty by 

further estimating the energy-poor population numbers. It further establishes the goal of reducing 

the proportion of energy-poor households from 9.8% to 7.5% by 2030. However, the only planned 

activity to support energy poverty alleviation is introducing the concept in the national policy, 

which was performed in 2021 in the Energy Law (Latvijas Republikas Ekonomikas Ministrija, 

2019; Latvijas Vēstnesis, 2024). The updated NECP introduces an additional subsidy support 

mechanism that increases investment affordability in energy efficiency improvements of buildings 

and equipment for energy-poor households. The mechanism aims to support 2017 energy-poor 

households by 2030 (Latvijas Republikas Klimata un enerģētikas ministrija, 2024).  
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Lithuania 

The updated draft of the Integrated NECP of the Republic of Lithuania was submitted on July 24, 

2023, by the Ministry of Energy, with 209 implemented or planned measures to address the 

emission reduction and challenges in the energy sector. 

In building renovation, the plan addresses both the existing and planned measures. The existing 

multi-apartment building renovation programme is being implemented between 2021 and 2026, 

with a total renovation rate of 3267 buildings by 2027 (The Ministry of Energy of the Republic of 

Lithuania, 2023). Within the Lithuanian NECP, the existing building renovation programme is 

extended until 2030. Even though the existing measures will continue, Lithuania's long-term 

renovation strategy acknowledges the need to improve and scale up the existing funding measures 

to meet new objectives (Government of the Republic of Lithuania, 2021). 

The Lithuanian NECP identifies energy poverty as a primary social context for the plan. It further 

states that Lithuania is one of the countries most affected by it in the EU (The Ministry of Energy 

of the Republic of Lithuania, 2023). The plan contains the goals of the National Progress 

Programme 2021-2030 to reduce the share of the population unable to keep their home adequately 

warm from 28.0% in 2018 to 17.0% in 2030 and the share of households that spend two times the 

median of the household national median energy costs from 17.1% to 10.0% (The Ministry of 

Energy of the Republic of Lithuania, 2023). Additionally, five measures are represented in the 

plan, with two new measures planned: more physical interaction with hard-to-reach consumers 

and energy efficiency information hub creation. 

2.3. Supervised machine learning for building energy performance prediction 

Seyedzadeh et al. (2018) define four main categories of building energy assessments: engineering 

calculations, simulation model-based benchmarking, statistical modelling, and machine learning 

(ML). The supervised ML is defined as a function approximation problem, where the training data 

takes the form of predictors and a predicted variable to produce a new predicted variable from the 

query of predictors (Jordan and Mitchell, 2015). Two primary categories of supervised ML 

problems are classification, where the predicted variable is represented by a label, and regression, 

represented by a continuous value (Jordan and Mitchell, 2015; Gianey and Choudhary, 2017). In 

classifying multiclass labels, the k-nearest neighbour (kNN) algorithm is deemed the simplest, 

whereas linear regression (LR) is the simplest algorithm for regression problems (Gianey and 

Choudhary, 2017). The Seyedzadeh et al. (2018) review further defines two primary supervised 

ML algorithms for building energy predictions and modelling in a context of lack of uncertainty 

in data: support vector machines (SVM) and artificial neural networks (ANN). Other studies have 

pointed out that ensemble-based methods, such as random forest (RF) and eXtreme gradient 

boosting (XGBoost), are also suitable for building energy performance evaluation (Tsanas and 

Xifara, 2012; Pham et al., 2020; Ali et al., 2024) 
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2.3.1. Support vector machines 

SVM describes algorithms of distribution-free learning for non-linear dependencies in regression 

and classification problems between the vector inputs and the dependent variable (Kecman, 2005). 

Methodologically, SVM is defined as identifying the dependency function of the weights, which 

are the subject of learning (Samardzioska et al., 2021). SVM is particularly useful in the context 

of multi-dimensional problems, as the model complexity is not dependent on the dimensionality 

of space (Vapnik et al., 1996). 

Samardzioska et al. (2021) applied SVM to develop an annual building energy consumption 

prediction model, utilising data for sixty renovated buildings in North Macedonia. A building 

survey was performed for every building to evaluate the thermal conductivity of different surfaces 

and gather data on building geometries. The developed model's mean absolute percentage error 

(MAPE) was 2.44%, whereas the MAPE of LR was 8.37% (Samardzioska et al., 2021). In a 

different context, Dong et al. (2005) applied SVM for the estimation of the landlord energy 

consumption for four commercial buildings in the Central Business District of Singapore. Using 

longitudinal and weather data for energy consumption, the authors developed an SVM model for 

predicting energy consumption with error values between -2.72% and 3.44% for different 

buildings in the study. However, the authors note that the algorithm's performance can be attributed 

to the small data pool with few abnormalities (Dong et al., 2005).  

2.3.2. Artificial neural networks 

As a method, ANN represent a series of connected basic computing units for local information 

transmissions resembling the operations of biological neurons (Yegnanarayana, 2004). The model 

consists of three primary layers – input, output, and hidden layers – which are interconnected, and 

the signal is transferred from one layer to another, impacted by the applied transfer and activation 

functions (Tsoka et al., 2022). 

Tsoka et al. (2022) applied ANN for the building energy label classification based on the two 

methodologies of residential building EPCs in the Lombardy region of Italy. Additionally,  the 

study utilised other input datasets associated with building characteristics, environmental 

conditions, and social factors. The developed algorithms achieved 93.10% for the before-2015 

EPC labelling, and 89.62% for the post-2015 EPC labelling system in Italy (Tsoka et al., 2022). 

Chari and Christodoulou (2017) used ANN to predict building energy ratings based on various 

dwelling configurations created using the Irish ‘Dwelling Energy Assessment Procedure’. 68 

energy-related factors, including external factors such as weather conditions, dwelling location, 

building characteristics, and thermal properties, were used for the model development, which were 

further divided into models with fewer associated input factors. The study found that increasing 

input factors reduces prediction accuracy while simultaneously decreasing the variance of building 
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energy ratings (Chari and Christodoulou, 2017). Therefore, finding an optimal balance between 

accuracy and variance is necessary (Chari and Christodoulou, 2017). 

2.3.3. Random forest 

RF represents an ensemble-based ML algorithm. Ensemble algorithms are a set of algorithms 

whose individual decisions are combined through weighted or unweighted voting as a way of 

performance improvement (Dietterich, 2000). RF is one of the primary algorithms for 

classification and regression problems, within which many decision trees are generated (Breiman, 

2001). For performance improvement, randomness is integrated as random feature selection to 

reduce overfitting, strengthening the model performance over other bagging algorithms (Breiman, 

2001). 

Tsanas and Xifara (2012) applied an RF algorithm to predict heating and cooling loads based on 

768 developed building models created based on different combinations of building orientations, 

forms, glazing areas, and their distribution theoretically located in Athens, Greece. The study 

concluded that applying the RF for building energy load prediction is a suitable method due to the 

low variations between the ground truth and outputs of the ML model (Tsanas and Xifara, 2012). 

Furthermore, the authors stress that the linear techniques are inappropriate for building energy load 

modelling. Wang et al. (2018) also used RF to make a regression predictive algorithm for hourly 

electricity consumption prediction based on two buildings' one-year historical energy consumption 

data. The data comprised the weather variables, the number of occupants, and temporal 

characteristics. The study concluded that applying random forest algorithms is more suitable for 

electricity consumption estimation than a regression tree and support vector regression (SVR) 

(Wang et al., 2018). 

2.3.4. eXtreme gradient boosting 

As with RF, XGBoost is an ensemble-based algorithm. However, XGBoost is based on gradient 

tree boosting, which includes functions as parameters and requires training in an additive manner 

with smaller trees compared to RF (Chen and Guestrin, 2016; Seyedzadeh et al., 2020). 

Furthermore, the algorithm authors note that XGBoost allows for parallel and out-of-core 

computations in cash- and sparsity-aware learning (Chen and Guestrin, 2016). 

Ali et al. (2024) applied different ensemble ML algorithms, including XGBoost and RF, and the 

end-use demand segregation methods to predict the building energy performance of a set of 

building archetypes based on the entire building stock of Ireland. XGBoost performed best, 

whereas LR, kNN, and SVM models performed the worst based on root mean square error, mean 

absolute error, and accuracy (Ali et al., 2024). The methodology was applied to evaluate different 

building renovation scenarios associated with implementing Ireland’s National Climate Action 

Plan 2023. The dataset developed by Tsanas and Xifara (2012) was used by Alawi, Kamar and 
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Yaseen (2024) to compare the performance of different machine learning algorithms, including 

SVR, kNN, RF, XGBoost, multi-layer perception, and gradient boosting algorithms. As with the 

Tsanas and Xifara (2012) study, the modelled heating and cooling loads for the developed building 

models based on the set of performance metrics for different numbers of input variable scenarios. 

The study identified RF models deemed overall the best for heating and cooling load predictions, 

whereas XGBoost showed particularly good results in cooling load predictions (Alawi et al., 

2024). 
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3. Methodology 

The overall methodological framework of the study comprises four core elements: data 

preparation, model selection process based on the selected error metrics, application of the selected 

model for all three cities, and multi-level statistical analysis of building- and neighbourhood-level 

characteristics correlated with residential building energy performance. The methodology for the 

study is summarised in Figure 4. The model selection step was performed only for the Tallinn 

building and energy data. The most suitable model based on the selected error metric performance 

was replicated for Riga and Vilnius building and energy data. The described workflow is 

performed in the R software. 

 

Figure 4. The graphical summary of the study methodology. 
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3.1. Study areas 

3.1.1. Tallinn, Estonia 

Tallinn was founded in the thirteenth century, with a rapid city development starting in the 1860s 

due to rapid industrialisation. During the Soviet Union occupation, the city significantly expanded, 

predominantly due to external migration (Ruoppila and Kährik, 2003). To meet the housing 

demand, large housing estates such as Mustamäe, Väike-Õismäe (located in the district of 

Haabersti), and Lasnamäe were built to meet the housing demand. Differentiation of housing types 

and districts was predominantly observed from the ethnic perspective, with the non-Estonian 

population being overrepresented in the housing estates, whereas the socio-economic segregations 

remained relatively low until the 2000s (Ruoppila and Kährik, 2003). The post-socialist housing 

of Tallinn has been shaped by privatisation and suburbanisation (Ruoppila, 2007), which increased 

occupational and income disparities (Tammaru et al., 2015). The inner city, which comprises the 

neighbourhoods in Kesklinn, Põhja-Tallinn, and Kristiine districts, has been restructured 

economically and socially, and gentrification is taking place (Pastak and Kährik, 2021; Maloutas 

and Karadimitriou, 2022). 

The distribution of residential buildings based on the period of construction is summarised in 

Figure 2. The neighbourhoods of the inner city predominantly observe pre-socialist housing with 

a mix of both socialist-era and post-socialist housing. The different neighbourhoods of Lasnamäe 

and Mustamäe, as well as parts of Haabersti and Põhja-Tallinn, are overrepresented by socialist-

era multi-apartment housing with smaller proportions of post-socialist housing developed in 

between the housing estates. In the case of Tallinn, three distinct areas of higher representation of 

detached dwellings are observed. They consist of Northern Pirita and North-Western Haabersti, 

which are dominated by detached post-socialist housing, as well as a more mixed district of 

Nõmme, where a mix of pre-socialist and socialist detached housing and small apartment buildings 

is observed. 
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Figure 2. Distribution of residential buildings based on the period of construction in Tallinn. 

3.1.2. Riga, Latvia 

Riga was founded at the beginning of the thirteenth century, and, similarly to Tallinn, started rapid 

development in the late nineteenth century. At the beginning of the twentieth century, Riga was 

the second largest city in the western part of the Russian Empire after St. Petersburg (Krišjāne and 

Bērziņš, 2014). Housing estates were built in Riga to meet the housing demands created by 

industrialisation and urbanisation policies of the Soviet Union. The current housing market in Riga 

was significantly shaped by neoliberal housing management policies characterised by 

privatisation, deregulation, and reduced state intervention stemming from the dissolution of the 

Soviet Union in the early 1990s (Lulle, 2024). Furthermore, a rapid population decrease was 

observed in Riga, with a simultaneous growth of the metropolitan area due to low-density 

suburbanisation processes in neighbouring municipalities (Freimane, 2020). 
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The distribution of housing based on the period of construction is illustrated in Figure 3. The 

neighbourhoods of the inner city and its peripheral neighbourhoods are overrepresented by pre-

socialist multi-apartment housing. The distribution of newer housing is very sparse in the areas of 

the inner city. Outside of the inner city, many socialist housing estates were developed, including 

the neighbourhoods of Iļģuciems, Imanta, Purvciems, Pļavnieki, and Ķengarags. Since then, many 

of these neighbourhoods have also seen the development of post-socialist housing. The peripheries 

of Riga are predominantly represented by post-socialist period detached housing, representing the 

suburbanisation processes described by Freimane (2020). 

 

Figure 3. Distribution of residential buildings based on the period of construction in Riga. 

3.1.3. Vilnius, Lithuania 

Vilnius was founded in the fourteenth century. However, Vilnius had significantly slower urban 

development in the nineteenth century compared to Tallinn and Riga due to the lack of significant 
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industrial expansion (Samalavičius et al., 2024). A rapid industrialisation and development of 

housing estates in Vilnius started in the 1960s, with Lazdynai neighbourhood becoming an 

emerging symbol of socialist ideas in the cityscape (Mikailiene, 2010). In the post-socialist 

transition, the housing privatisation and the spread of the service economy were the key drivers of 

new urban developments in Vilnius, characterised by fragmentation (Burneika, 2008). Ethnic 

composition and intensive suburbanisation were identified as key drivers of segregation levels and 

patterns in Vilnius (Burneika et al., 2019; Ubarevičienė and Burneika, 2020). 

Figure 4 shows the distribution of residential housing divided by construction period. In the case 

of Vilnius, the socialist-era built housing overall dominates in many of the existing 

neighbourhoods, with post-socialist neighbourhoods being developed in neighbourhoods further 

away from the inner city. In the inner city, more variability in housing based on the construction 

period is observed. The observed distribution of residential housing follows the slow urban 

development rates during the pre-socialist period described by Samalavičius et al. (2024). 

 

Figure 4. Distribution of residential buildings based on the period of construction in Vilnius. 
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3.2. Data 

Open-access, publicly available data was used to develop the machine-learning-based model for 

building energy performance prediction. Dataset typologies are summarised in Table 2, and the 

detailed dataset description is provided in Annexe I.  

Table 2. Summary of the datasets used in building an energy performance predictive machine-

learning-based model. 

Dataset Type Described time Variables used 

Building 

topographical data 
V 

Estonia: 

05.11.2024 

Latvia: 

10.05.2024 

Lithuania: 

11.11.2024 

Estonia: Building code, year of building construction, 

building height (m), total projected building surface (m2) 

Latvia: Building code, year of building construction, number 

of building floors, building construction area (m2) 

Lithuania: Building address, year of building construction, 

total heated area (m2), recorded building renovation activities 

Energy performance 

certificates 
A 

Estonia: 

05.11.2024 

Latvia: 

06.10.2024 

Lithuania: 

02.01.2025 

Estonia: Building code, energy label, Total annual energy 

consumption (kWh/m2) 

Latvia: Building code, energy label, Total annual heat energy 

consumption (kWh/m2) 

Lithuania: Building address, total annual energy consumption, 

energy label 

Land surface 

temperature 
R 

Estonia: 

06.03.2024 

Latvia: 

06.03.2024 

Lithuania: 

07.03.2024 

Land surface temperature (°C) 

Building renovation 

grants  
A 

Estonia: 

31.12.2023 

Latvia: 

31.12.2023 

Building code 

 

Note: Type denotes the dataset typology: ‘V’ stands for a vector dataset, ‘R’ stands for a raster dataset, and ‘A’ stands 

for an attribute tabular dataset. 

The study uses EPCs as the primary energy data source on building levels. However, several key 

differences exist between the EPCS in Estonia, Latvia, and Lithuania, as described in the following 

subsection. To obtain the 10-metre resolution land surface temperature raster datasets, an 



31 

 

algorithm developed by Onačillová et al. (2022) combining Landsat-8 and Sentinel-2 raster data 

was used. Based on Landsat-8 data, the authors defined a multiple linear regression model to 

represent the relationship between spectral indices – normalised difference vegetation, built-up, 

and water indices - and land surface temperature. This model, which was made available in Google 

Earth Engine, enabled the calculation of land surface temperature at a 10-metre resolution using 

the same indices (Onačillová et al., 2022). The date of measurement of satellite data was used as 

the primary data filter, excluding newer data from the study.  

The population data for Tallinn, Vilnius, and Riga were provided to the author by partners of the 

Centre for Migration and Urban Studies of the University of Tartu in Latvia and Lithuania. In all 

three cases, the data used was the 2021 population census. Its aggregation level was the 1 km2 grid 

cells for Riga, Latvia, and to the level of small statistical neighbourhoods in Vilnius, Lithuania and 

Tallinn, Estonia. The occupational status of workers and population age groups were synchronised 

between all the datasets. However, the variable describing the population's ethnicity varied 

between the capital cities: the declared ethnicity was used for Riga, with four categories being 

Latvian, Russian, other, and non-declared; The primary household language was used for Tallinn, 

with three categories being Estonian, Russian, and other; and the mother tongue of a person was 

used for Vilnius, with four categories being Lithuanian, Polish, Russian, and other. 

3.2.1. Building energy performance certificates 

Building EPCs were introduced in the original EPBD text in 2002 as the legally recognised 

certificate to describe the energy performance of a building based on the established reference 

values and benchmarks for cross-comparison (European Parliament, 2003). However, the 

transposition of the EPBD and following recasts allowed for the variation in the definition of 

methodologies for EPCs, there are several core differences in its interpretation between Estonia, 

Latvia, and Lithuania. In Estonia, the energy label is determined based on the total energy demand 

associated with building energy use, which varies across different building typologies and sizes 

(Ruggieri et al., 2023). In Latvia, the energy label is determined based on actual building energy 

consumption for heating, cooling, ventilation, hot water preparation, and lighting, with variability 

between different sizes of residential and non-residential buildings and reference values for total 

energy consumption and energy consumption for heating (Ministru kabinets, 2021). In Lithuania, 

the energy label is determined based on the thermal transmission characteristics of the building 

and the efficiency of using primary non-renewable energy (Ruggieri et al., 2023). Furthermore, no 

national legal benchmarks and reference values for energy consumption exist (Ruggieri et al., 

2023). 

The described differences between the EPCs in the three countries required the creation of an 

additional variation of the methodology based on the described. In Estonia, the reference values 

for the energy labels were used with the variation between the different sizes of buildings, with 

three main categories being below 120 m2, between 120 and 220 m2, and above 220 m2 (Majandus- 
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ja taristuministri, 2019). Furthermore, separate ranges were designed for multifamily buildings 

(Majandus- ja taristuministri, 2019). In Latvia, a single legally defined energy label category was 

used for all buildings (Ministru kabinets, 2021). The means were calculated from the pre-defined 

energy consumption values. However, as the Lithuanian energy performance certificate regulation 

does not contain the reference energy consumption values per energy label, the study author 

computed and applied the median values of total energy demand per energy label for Vilnius. The 

final values used in the study are described in Table 3. 

Table 3. Values of energy performance labels used in the study. 

Label 
Estonia-120 

(kWh/m2) 

Estonia-120-

220 (kWh/m2) 

Estonia-mf 

(kWh/m2) 

Latvia 

(kWh/m2) 

Lithuania 

(kWh/m2) 

A++ - - - - 12.6 

A+ - - - 30 31.3 

A 145 120 105 30-40 38.0 

B 146-165 121-140 106-125 40-60 73.4 

C 166-185 141-160 126-150 60-80 126.2 

D 186-235 161-210 151-180 80-100 166.8 

E 236-285 211-260 181-220 100-125 285.6 

F 286-350 261-330 221-280 125 290.0 

G 351-420 331-400 281-340 - 360.6 

H 421 401 341 - - 

Source: 

Majandus- ja 

taristuministri 

(2019) 

Majandus- ja 

taristuministri 

(2019) 

Majandus- ja 

taristuministri 

(2019) 

Ministru 

kabinets 

(2021) 

Own 

calculation 

based on 

Energy 

Performance 

Certificate 

data 

Note: ‘mf’ denotes multifamily housing. 
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3.3. Methods 

Data pre-processing and augmentation 

The work with the vector data was performed using the sf package (Pebesma, 2018; Pebesma and 

Bivand, 2023), whereas the raster data was manipulated with the terra package (Hijmans, 2025). 

The work was initiated by sampling the land surface temperatures for every building, which was 

done by calculating the mean value for the land surface temperature raster centroid points within 

the boundaries of the vectors. Then, the EPC data was merged with the vector building dataset 

using the building code or address. The EPCs were filtered out to include only the ones active 

during the selected date for the land surface temperature raster data. The longitude and latitude of 

building area polygons were added as additional input variables for the predictive machine learning 

models. The final datasets used for the model training were attribute tables. 

A testing and training data split was performed to preserve a part of the dataset and calculate the 

selected metrics for errors. 10% of the available data remained to be used only for the performance 

indicator calculations. In the model selection process and the final model development without the 

data split, the synthetic minority over-sampling technique (SMOTE) was used. As the building 

energy labels were unequally distributed between the classes, SMOTE allowed the introduction of 

synthetic data generated along the line segments for a selected number of neighbours (Chawla et 

al., 2002). In this study, SMOTE was performed by using the smotefamily package (Siriseriwan, 

2024). For the hyperparameter optimisation for the selected predictive models, repeated cross-

validation was performed with the trainControl function in the caret package, with five folds 

repeated three times (Kuhn, 2024). 

3.3.1. Predictive model selection and application 

The predictive model selection process was performed based on Tallinn building and energy data. 

A set of criteria was selected to evaluate and compare the performance of the models, with the 

best-performing modelling framework replicated for Riga and Vilnius. The final output of this 

work section included three predictive machine-learning-based models for every selected capital 

city. Equations 1, 2, and 3 describe the input models for the different machine-learning model 

types used in the study for Tallinn, Riga, and Vilnius. 

𝑌𝑇𝑎𝑙𝑙𝑖𝑛𝑛~ 𝑌𝐶 + 𝐿𝑜𝑛𝑔 + 𝐿𝑎𝑡 + 𝐿𝑆𝑇 + 𝑆 + 𝐻 + 𝑉                   (1), 

where 

Y – predicted energy variable, 

YC – year of building construction, 

Long – the centroid points’ longitude, 

Lat – the centroid points’ latitude, 

LST – mean land surface temperature (°C), 
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S – building projection area (m2), 

H – building height (m), 

V - building volume (m3). 

Due to data availability on buildings in Riga, the height of the building was substituted by the 

number of building floors in the model. Furthermore, the lack of a height variable did not allow 

for the calculation of the total building volume used for the Tallinn machine-learning model. 

𝑌𝑅𝑖𝑔𝑎~ 𝑌𝐶 + 𝐿𝑜𝑛𝑔 + 𝐿𝑎𝑡 + 𝐿𝑆𝑇 + 𝑆𝑐 + 𝐹                        (2), 

where 

𝑆𝑐 – building construction area (m2), 

F – number of building floors. 

The building height and volume variables were unavailable within the data available for the 

Vilnius building stock. In this instance, it has been substituted by the total heated area, which 

depends on the number of floors. 

𝑌𝑉𝑖𝑙𝑛𝑖𝑢𝑠~ 𝑌𝐶 + 𝐿𝑜𝑛𝑔 + 𝐿𝑎𝑡 + 𝐿𝑆𝑇 + 𝑆ℎ + 𝑆          (3), 

where 

𝑆𝑐 – total heated area (m2). 

Selected models 

In total, ten models were selected for the predictive model development. The tested models are 

described in Table 4. The models represent classification and regression problems predicting either 

the energy label or the total annual energy consumption per square metre. Only the training and 

testing data subset with the energy label and total annual energy consumption values were used to 

facilitate comparability between the classification and regression models. Furthermore,  the values 

of energy labels were transformed into the total annual energy consumption values to compare the 

results based on the selected performance indicators. 

Table 4. Summaries of the selected algorithms for model development. 

Model Abbreviation Type of model Package Reference 

Naïve Bayes NB Classification klaR Weihs et al. (2005) 

Support Vector 

Machine with 

Class Weights 

SVM Classification kernlab 
Karatzoglou et al. 

(2004) 

k-Nearest 

Neighbour 
KNN Classification Base R R Team (2014) 
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Random Forest RF 
Classification, 

Regression 
randomForest 

Liaw and Wiener 

(2002) 

eXtreme 

Gradient 

Boosting 

XGBoost 
Classification, 

Regression 
xgboost, plyr 

Chen and He (2024), 

Wickham (2011) 

Linear 

Regression 
LR Regression Base R R Team (2014) 

General Additive 

Model 
GAM Regression mgcv Wood (2011) 

Bayesian 

Regularized 

Neural Networks 

BRNN Regression brnn Rodriguez et al. (2023) 

 

The instances of application of SVM, kNN, RF, XGBoost, LR, and neural networks were already 

identified and described in the existing literature on machine-learning algorithm applications to 

develop models for energy performance evaluation. Two additional statistical modelling 

algorithms were added for the selection process: naïve Bayes (NB) and general additive model 

(GAM). 

NB in the literature was described as one of the most effective classifiers (Friedman et al., 1997), 

suitable for large data handling (Wu et al., 2008). During the training phase, the classifier learns 

the conditional probability of each attribute for each class label (Friedman et al., 1997). During the 

classification, Bayes' rule is applied to compute the class probability of the attribute combination 

and the prediction is made based on the highest posterior probability (Friedman et al., 1997). One 

of the key features of the NB is the probabilistic independence of attributes (Friedman et al., 1997; 

Wu et al., 2008). 

GAMs are a likelihood-based regression model which utilises scatterplot smoothers to generalise 

Fisher scoring procedures, first conceptualised by Hastie and Tibshirani (1986) as a flexible 

method for nonlinear covariate effect identification. In GAMs, the selection of the smoothing 

function is the primary consideration for the model development (Wood, 2025). Limited 

applications of GAMs in building energy modelling were also identified (Kilis et al., 2025). 

However, even as GAMs are suitable for large data handling, one of the key issues, particularly in 

high-dimensional space, is the computational capacity of such algorithms (Wood, 2025). 

Selection parameters for model performance 

A set of three primary indicators, mean absolute error (MAE), root mean squared error (RMSE), 

and median absolute deviation (MAD), was used to compare the different developed models based 
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on their performance for the testing subset of data. These three indicators were calculated globally 

for all the outputs for the testing subset of data. The error curves between the predicted and actual 

energy consumption values were plotted to assess the model performance further, as within the 

existing literature on global metric selection, there exists a consistent debate on the application of 

the different indicators (Willmott and Matsuura, 2005; Chai and Draxler, 2014; Hodson, 2022). 

MAE describes the absolute difference between the predicted and actual value, calculated with 

Equation 4. MAE is a suitable global model evaluation parameter for exponentially distributed 

variables and Laplacian-like error distributions (Hodson, 2022). Importantly, MAE gives the same 

weight to all errors compared to RMSE (Chai and Draxler, 2014), and preserves the unit of data 

(Hodson, 2022). 

 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|𝑛

𝑖=1                                    (4), 

where 

𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙 – actual building energy consumption, kWh/m2, 

𝐸𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 – predicted building energy consumption, kWh/m2. 

RMSE describes the square root of the averaged squared difference between the actual and 

predicted value, described by Equation 5. As an indicator, RMSE was shown to be more sensitive 

towards outliers, especially when the distribution of error magnitudes is highly variable (Willmott 

and Matsuura, 2005). However, Chai and Draxler (2014) have shown that RMSE is more 

appropriate for normally distributed errors and described that the use of absolute values, such as 

within MAE, should be avoided for many mathematical calculations. 

  𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑛
𝑖=1                                  (5) 

As the application of RMSE or MAE has been shown to have associated proponents, the study 

utilises MAD as an additional metric of model performance. It is described as the median value of 

the absolute predicted values and the actual global median, calculated by Equation 6. As with the 

MAE, MAD preserves the data unit, yet is described as the more robust metric for the error 

distribution, deviating from the normal distribution (Hodson, 2022). 

𝑀𝐴𝐷 =  1.483 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛𝑖=1
𝑛 |𝐸𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙)|                 (6) 

The final model was selected based on the best performance on the metric, taking into 

consideration the error distribution curves. After the model selection process for the Tallinn 

building and energy data, the selected model was applied to Riga and Vilnius.  Following the 

argument of Hodson (2022) on the application of mean values for error distribution different from 

Gaussian or  Laplacian, the study uses median absolute percentage error (MAPE) to evaluate the 
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final model performance using 10% testing data. Equation 7 summarises the calculation of median 

absolute percentage error. 

𝑀𝐴𝑃𝐸 =  100% ∗ 𝑚𝑒𝑑𝑖𝑎𝑛𝑖=1
𝑛 |

(𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙−𝐸𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

(𝐸𝐶𝑎𝑐𝑡𝑢𝑎𝑙
|                           (7) 

The datasets with the actual energy consumption were merged with the machine learning model's 

predicted outputs. For multifamily buildings, the calculated energy consumption was multiplied 

by the average size of dwellings in urban areas per country. In contrast, the existing area was used 

for the detached housing units. When considering the energy prices, electricity and heating prices 

were considered for Estonia and Lithuania, whereas only the heating price was used for Riga. This 

stems from the differences in the EPCs definitions and available reference values per energy class. 

3.3.2. Neighbourhood-level analysis 

A multilevel model was developed for every capital city. Multilevel or hierarchical models 

represent an established modelling framework in social sciences to simultaneously study group-

level and individual-level effects (Greenland, 2000). The study implemented the models using the 

lme4 package in R, which was developed to create and analyse mixed-effect models (Bates et al., 

2015). In the models, the dependent variable was the predicted or already available energy 

consumption value per square metre, whereas the independent variables described the building 

characteristics and neighbourhood composition. The building's heated area variable was 

logarithmically transformed, and it was scaled together with building age. For neighbourhood-

level variables, the proportional data was calculated and scaled. Furthermore, in the multi-level 

statistical models, one variable per category was excluded to be the reference group. For 

occupational status, the reference variable is the high occupational groups; for mother tongue or 

ethnicity, the reference variable is the ethnic or linguistic majority group; and for population age 

groups, it is the working age adult group. Equations 8, 9, and 10 describe the developed models 

for Tallinn, Riga, and Vilnius. 

 

𝐸𝐶𝑛𝑏 = 𝛽0 + 𝛽1𝐿_𝑅𝑈𝑛 +  𝛽2𝐿𝑂𝑇𝐻𝑛
+ 𝛽3𝑂_𝑀𝑛 + 𝛽4𝑂_𝐿𝑛 + 𝛽5𝐴_𝐶𝑛 +  𝛽6𝐴_𝐸𝑛 + 𝛾𝑛 +

𝛽7𝐵𝐴𝑏 + 𝛽8𝐼(𝑅𝐺)𝑏 + 𝛽9𝐼(𝑀𝐹)𝑏 + 𝛽10𝐵𝐻𝐴𝑏 + 𝜀𝑛𝑏   

(8), 

where 

n – neighbourhood-level variable. 

b – building-level variable. 

𝐸𝐶𝑛𝑏 – energy consumption per square metre (kWh/m2/a). 

𝛽0 − 𝛽10 – estimate values. 

𝐿_𝑅𝑈𝑛,  𝐿_𝑂𝑇𝐻𝑛 – primary languages used in households (Russian, Other). 

𝑂_𝑀𝑛,  𝑂_𝐿𝑛 – working individuals occupational status groups (Medium, Low). 

𝐴_𝐶𝑛, 𝐴_𝐸𝑛 – individuals by age groups (C: 0-14, E: 65+). 
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𝐵𝐴𝑏 – building age. 

𝐼(𝑅𝐺)𝑏 – building renovation grant allocation. 

𝐼(𝑀𝐹)𝑏 – multifamily building. 

𝐵𝐻𝐴𝑏 – building’s heated area. 

𝛾𝑛 – random neighbourhood effect. 

𝜀𝑛𝑏 – random building effect. 

The primary difference between the models lies in ethnic variables. In the case of Latvia, the 2021 

population census utilises the declared ethnicity of a person rather than the mother tongue or the 

primary language used in a household. Additionally, the dependent variable for Riga includes only 

heat energy costs rather than the total energy costs due to the difference in energy labels between 

the countries. 

 

𝐸𝐶𝑛𝑏 = 𝛽0 + 𝛽1𝐿_𝑅𝑈𝑛 +  𝛽2𝐿_𝑂𝑇𝐻𝑛 + 𝛽3𝐿_𝑁𝐴𝑛 + 𝛽4𝑂_𝑀𝑛 +  𝛽5𝑂_𝐿𝑛 + 𝛽6𝐴_𝐶𝑛 +

 𝛽7𝐴_𝐸𝑛 + 𝛾𝑛 + 𝛽8𝐵𝐴𝑏 + 𝛽9𝐼(𝑅𝐺)𝑏 + 𝛽10𝐼(𝑀𝐹)𝑏 + 𝛽11𝐵𝐻𝐴𝑏 + 𝜀𝑛𝑏   

(9), 

where 

𝐿_𝑅𝑈𝑛,  𝐿_𝑂𝑇𝐻𝑛, 𝐿_𝑁𝐴𝑛 – declared ethnicity of a person (Russian, Other, Non-declared) 

For the model for Vilnius, four ethnic groups based on the mother tongue are present. These 

include individuals with Lithuanian, Russian, Polish, and other languages as their mother tongue. 

As with the Tallinn multilevel model, the dependent variable is the total annual energy costs. 

 

𝐸𝐶𝑛𝑏 = 𝛽0 + 𝛽1𝐿_𝑅𝑈𝑛 +  𝛽2𝐿_𝑃𝐿𝑛 + 𝛽3𝐿_𝑂𝑇𝐻𝑛 + 𝛽4𝑂_𝑀𝑛 + 𝛽5𝑂_𝐿𝑛 + 𝛽6𝐴_𝐶𝑛 +

+ 𝛽7𝐴_𝐸𝑛 + 𝛾𝑛 + 𝛽8𝐵𝐴𝑏 + 𝛽9𝐼(𝑅𝐺)𝑏 + 𝛽10𝐼(𝑀𝐹)𝑏 + 𝛽11𝐵𝐻𝐴𝑏 + 𝜀𝑛𝑏   

(10), 

where 

𝐿_𝑅𝑈𝑛,  𝐿_𝑃𝐿𝑛, 𝐿_𝑂𝑇𝐻𝑛 – the mother tongue of a person (Russian, Polish, Other) 

After developing the multi-level models, the variance inflation factors (VIFs) were calculated to 

determine the multicollinearity between the variables with the performance package in R (Lüdecke 

et al., 2021). VIF describes how much the estimated variance of the variable’s regression 

coefficient is increased above what it would be if the coefficient of determination for the same 

variable were equal to zero (O’Brien, 2007). The upper threshold of the VIF used in the study is 

10, being one of the most common thresholds (O’Brien, 2007). Afterwards, the identified patterns 

of inequality were assessed based on the existing literature on the unequal impacts of energy 

poverty between the different residential groups and emerging characterisations of unequal 

distributional impacts of energy efficiency and climate policies. Taking into consideration the 

existing policy backgrounds of the countries on energy efficiency and energy poverty, the 

identified patterns were analysed based on the existence of existing mitigation strategies.  
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4. Results 

4.1. Machine learning model selection 

In total, the data of 3008 buildings in Tallinn were used for the 10-model cross-comparison, out 

of which the data of 297 buildings were used for model testing. The dataset represented a subset 

of the buildings with all non-zero variables, including total annual energy consumption per square 

metre and energy label. The performance of SMOTE increased the total number of data points 

used for training purposes from 2711 to 3989. After training every model with selected 

classification and regression algorithms, the selection performance indicators were calculated for 

the testing subset of data. The energy label values were transformed for the classification models 

based on Estonia's defined thresholds of EPCs. The outputs of performance metric calculations are 

summarised in Table 5. 

Table 5. Summary of the model selection performance indicators for Tallinn building energy 

performance modelling. 

Model Type MAE RMSE MAD 

NB Classification 51.57 73.84 49.68 

SVM Classification 54.57 65.28 49.68 

KNN Classification 47.28 31.00 49.68 

RF Classification 37.69 54.25 24.47 

XGBoost Classification 37.88 54.36 24.47 

RF Regression 34.96 284.61 40.22 

XGBoost Regression 39.38 311.83 45.84 

LR Regression 48.51 340.64 58.12 

GAM Regression 43.91 335.94 49.70 

BRNN Regression 42.89 33.42 49.70 

 

The results of the global metric calculations for different models show highly variable results 

between the different performance indicators. Based on the MAE, the RF regression model has 

shown the best results, whereas RMSE showed that KNN and BRNN have a better performance 

compared to the rest of the models. However, when considering MAD as an indicator, the 

performance of classification RF and XGBoost is substantially better compared to the rest of the 

models. The variability of the results between the different indicators required to evaluate the error 
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distribution curves, as, based on the literature on MAE, RMSE, and MAD, different indicators are 

better equipped for different error distributions (Hodson, 2022). The results are displayed in Figure 

5. Based on the distribution, the error curves for the testing data predictions are neither Gaussian 

nor Laplacian, which resulted in the prioritisation of the MAD as an indicative parameter of model 

performance. Furthermore, even though the performance between the two models was the same 

based on MAD, the RF classification model showed slightly improved performance with other 

metrics, such as MAE and RMSE, compared to the XGBoost classification model. Hence, the 

following developed model for all three cities is the RF classification model for energy labels, 

which are transformed to standardised energy demand based on the values in Table 3.  

 

Figure 5. The absolute error distribution curves and error distribution confidence intervals. Note: 

The dot denotes the median absolute error for the predicted energy consumption on testing data. 

The green colour represents the 50% confidence interval range, pale green represents the 80% 

confidence interval range, and beige represents 95% of the confidence interval range. The stroked 

line represents the global median absolute error range between all the models. 
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4.2. Energy performance prediction 

After the model selection process was facilitated, three RF classification models were developed 

for all the available building data without performing the data split for performance metric 

calculation. In total, 5944 individual building data points were used for Tallinn, 1192 for Riga, and 

802 for Vilnius. After applying SMOTE, the total number of used data points increased to 7139 in 

Tallinn, 2850 in Riga, and 2061 in Vilnius. Table 6 summarises the variable importance in every 

model based on the varImp method in the caret package (Kuhn, 2024).  

Table 6. The variable importance evaluation for the developed RF classification model for building 

energy label performance in three capital cities. 

Tallinn, Estonia Riga, Latvia Vilnius, Lithuania 

YC 1094.73 YC 447.90 Lon 320.97 

Lat 907.04 Lat 442.16 𝑆ℎ 293.23 

Lon 890.67 Lon 410.93 LST 263.52 

V 872.16 𝑆𝑐 385.65 Lat 257.93 

S 842.15 LST 359.82 YC 256.32 

LST 823.42 F 293.04 S 247.13 

H 632.90     

 

The modelling frameworks for Tallinn and Riga show the same patterns of variable importance, 

with year of building construction and location-related variables being the most important. A 

decrease followed the dimension-related variables in variable importance based on the level of 

spatial dimension described. In both instances, the building height-related variables were the least 

important. The mean land surface temperature of a building had a low level of importance in both 

instances. However, the models for Vilnius had several important changes compared to Riga and 

Tallinn: the year of building construction had one of the lowest variable importance, whereas the 

mean land surface temperature value had a higher level of importance. The role of the land surface 

temperatures in the models reflects the differences in the EPC frameworks, where, only in 

Lithuania, the building energy label is assigned based on the energy transmission values of 

different building elements, rather than the energy consumption values. 

10% of the training data before the application of SMOTE was used for final tests of model 

performance. It represented 656 data points for Tallinn, 130 for Riga, and 85 for Vilnius. The 

results can be observed in Table 7. In the case of Tallinn and Riga, the values of MAE and RMSE 

show similar performance, with the overall decrease of the values being observed. However, the 
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MAD value, an initial selection indicator for applying the RF classification algorithm for the 

developed machine-learning-based predictive model, increased. In the case of the developed model 

for Vilnius, the MAE and RMSE indicators increased, whereas the MAD indicator decreased 

drastically. As MAD is the only indicator using the median values rather than the mean, this 

potentially indicates a low number of substantially misclassified testing data points, drastically 

increasing the values of MAE and RMSE, which can be attributed to the overall small number of 

points used for testing purposes. 

Table 7. Summary of the performance indicators for the final machine-learning-based models. 

Model MAE RMSE MAD MAPE 

Tallinn, Estonia 33.78 53.13 40.78 17.46% 

Riga, Latvia 33.29 47.76 41.45 30.80% 

Vilnius, Lithuania 52.95 82.52 6.53 1.54% 

 

When comparing the MAPE between the different developed models, a substantial variation is 

observed between the cities. Overall, the lowest error rate is observed in the model for Vilnius, 

which follows the MAD results. This deems the approach to be most suitable in the context of 

building energy efficiency labels associated with the heat transmission values, which is more 

directly related to the land surface temperatures of buildings. Even though the model performance 

indicator values for Riga and Tallinn have low variance, the difference in MAPE is drastic due to 

the differences in the described energy performance thresholds of associated energy labels. In 

further work, especially on the discussion stage, the results associated with Riga energy efficiency 

of building modelling will be used more cautiously due to the highest error rate. 

Tallinn, Estonia 

After applying the RF classification model to the buildings without an energy label in Tallinn, the 

total number of buildings with it increased from 6677 to 23473, describing 85.28% of the total 

residential building stock. The mapped results for the level of statistical neighbourhoods of Tallinn 

are summarised in Figure 6. Overall, different neighbourhoods of Kesklinn and Põhja-Tallinn, 

predominantly situated in Tallinn’s inner city, observe the lowest levels of energy efficiency in 

housing, particularly Vanalinn and Kadriorg in Kesklinn, and Kalamaja, Pelgulinn, and Kopli in 

Põhja-Tallinn. From the point of view of housing, the following neighbourhoods are represented 

by higher shares of pre-socialist housing with substantial proportions of newer housing. In case of 

Kopli, the neighbourhood is predominantly represented by early socialist-era multi-apartment 

buildings. The energy consumption of residential buildings in other neighbourhoods and districts 

is lower. However, it is important to note that in the case of Estonia, the energy label and thus the 

associated energy consumption value used in EPCs describes the overall energy demand of a 
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building, which can potentially indicate the increased electricity consumption due to the mixed use 

of buildings, particularly in the inner city. 

 

Figure 6. Median building energy consumption based on the existing and modelled data in Tallinn, 

divided by neighbourhoods. 

Riga, Latvia 

After using the RF classification algorithm, the total number of buildings with an energy label 

increased from 1322 to 24616, describing 97.92% of the residential buildings in Riga. The 

modelling results aggregated to the level of statistical grids are summarised in Figure 7. Several 

neighbourhoods are highlighted when overlaying Riga's neighbourhoods with the grid level data. 

Grid units of Avoti, Latgale, and Pētersala-Andrejsala neighbourhoods, which are associated 

predominantly with pre-socialist housing built at the beginning of the twentieth century in the inner 

city, have a higher median heat consumption. However, typologically, higher values of heat energy 

consumption were also observed in neighbourhoods with predominantly prefabricated multi-

apartment buildings, such as Iļģuciems, Dzirciems, Čiekurkalns, and Teika, which are associated 
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with older socialist-era housing. Furthermore, with the increase of distance from the downtown, 

the overall energy efficiency of housing observed is improved, compared to the neighbourhoods 

surrounding it. 

 

Figure 7. Median building heat energy consumption based on the existing and modelled data in 

Riga, divided by statistical 1 km2 grid cells. 

Vilnius, Lithuania 

For Vilnius, the total number of buildings with an energy label increased from 911 to 3993, 

representing 49.04% of the residential building stock in the used dataset. Figure 8 describes the 

outputs of the machine learning algorithm application for Vilnius. Overall, the neighbourhoods of 

Karoliniškės eldership, which are characterised by Soviet-era-built housing, have the highest mean 

building energy consumption. Additionally, high variabilities are observed in the Centras eldership 

with various residential building typologies. The elderhips of Justiniškės and Pašilaičiai in the east 
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of Vilnius have lower median building energy consumption. These elderships and their 

neighbourhoods are characterised by various typologies of prefabricated multi-apartment 

buildings. Due to the low number of classified pre-socialist residential buildings, the direct link 

between the worse energy performance and pre-socialist housing cannot be observed from 

mapping the modelling results, as done for Riga and Tallinn. 

 

Figure 8. Median building energy consumption based on the existing and modelled data in Vilnius, 

divided by neighbourhoods. 

4.3. Neighbourhood-level analysis 

After performing the building energy performance and associated dwelling-level energy costs, the 

socio-economic, demographic, and ethnic datasets were used to assess the trends associated with 



46 

 

the variable energy costs between the different population groups. The following subchapters 

describe the results per city. 

4.3.1. Tallinn, Estonia 

Table 7 summarises the results of the multi-level model for Tallinn. Building-level characteristics 

have several dynamics. Building age positively impacts the building energy consumption per 

square metre, describing poorer energy performance being observed in older buildings. Overall, 

multi-apartment buildings are associated with better energy performance compared to detached 

dwellings. Simultaneously, the total building heated area has a positive impact on the building 

energy consumption values. The building renovation grants have a positive impact on building 

energy consumption, potentially being associated with the increased electrification of the building 

elements, such as ventilation, as well as not considering the changes to energy systems, which 

reduce the climate impact of the building.  

Table 7. The results of the multilevel model for total annual building energy consumption per 

square metre for Tallinn, Estonia. 

 Estimate Std. Error p-value Significance VIF 

Intercept 181.42 1.31 < 2.00 * 10-16  *** - 

Building age 12.28 0.42 < 2.00 * 10-16  *** 1.06 

Renovation grants (YES = 1) 8.21 2.77 3.02* 10-3  ** 1.02 

Multi-apartment building (YES = 1) -4.96 1.03 1.46 * 10-6 *** 1.73 

Total heated area  6.54 0.65 < 2.00 * 10-16  *** 2.01 

Russian-speaking population (n) -0.07 1.30 0.04 - 3.28 

Population with other mother tongues (n) -0.39 1.19 0.89 - 3.11 

Middle occupational groups (n) -1.67 0.81 0.74  * 1.41 

Low occupational groups (n) -0.23 1.58 0.96 - 4.72 

People aged 0-14 (n) -2.18 1.61 0.17 - 3.75 

People above 65 years of age (n) -2.07 1.40 0.14 - 3.07 

 

Note: Significance codes are denoted as “***” for the p-values between 0 and 1*10-3; “**” for the p-values 

between 1*10-3 and 0.01; “*” for the values between 0.01 and 0.05; ‘.’ for the p-values between 0.05 and 

0.10; and ‘-‘ for p-values above 0.10. 

When considering neighbourhood-level variables, only one variable had a statistically significant 

impact: middle occupational groups. Compared to high occupational groups, a decrease in building 

energy consumption per square metre is observed when the proportion of the middle occupational 
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groups increases from the total share of workers on a neighbourhood level. As the inner city 

neighbourhoods observed the highest median building energy consumption values, the results can 

be attributed to the overrepresentation of the high occupational groups in the inner city. However, 

it is important to note the lack of statistical significance of low occupational groups compared to 

high occupational groups in relation to building energy efficiency. This observation is further 

important when considering the existing instruments of energy transition. As the two categories 

do not exude variation, the observed energy efficiency values for the buildings are more 

homogeneous. Furthermore, the statistically significant variations of energy efficiency levels were 

not observed based on the ethnic variables used in the study. All the variables are below the set 

threshold of VIF values, describing the suitable levels of collinearity between the independent 

variables of the model. 

4.3.2. Riga, Latvia 

Table 8 refers to the multilevel modelling result for Riga. When considering the multilevel model 

developed for Riga, the effects of the building-level variables on building energy consumption are 

similar, with one distinction: impacts of building being classified as a multi-apartment building. 

In this case, the multi-apartment buildings were associated with higher heat energy consumption 

per square metre and thus poorer energy performance compared to the detached housing. This 

observation is also further confirmed by the substantially lower values of median building heat 

energy consumption in the city outskirt grid cells, where detached housing is more dominant 

housing typology, compared to the rest of Riga (see Figure 7). The root cause of the observation 

is a substantially higher share of pre-socialist multi-apartment buildings from the total building 

stock. 

Table 8. The results of the multilevel model for annual heat energy consumption per square metre 

for Riga, Latvia. 

 Estimate Std. Error p-value Significance VIF 

Intercept 27.48 1.22 < 2.00 * 10-16  *** - 

Building age 10.10 0.23 < 2.00 * 10-16  *** 1.15 

Renovation grants (YES = 1) 8.38 2.51 8.20 * 10-4  *** 1.54 

Multi-apartment building (YES = 1) 5.83 0.55 < 2.00 * 10-16  *** 1.00 

Total heated area  20.42 0.46 < 2.00 * 10-16  *** 1.69 

Ethnicity: Russian (n) -0.52 0.78 0.50 - 1.83 

Ethnicity: Other (n) -0.32 0.53 0.55 - 1.45 

Ethnicity: Non-declared (n) -0.02 0.56 0.98 - 1.66 
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Middle occupational groups (n) 0.81 0.39 0.04  * 1.24 

Low occupational groups (n) 1.79 0.62 4.29 * 10-3  ** 1.53 

People aged 0-14 (n) -0.99 0.56 0.08 . 2.06 

People above 65 years of age (n) 0.84 0.50 0.10  . 1.62 

 

Note: Significance codes are denoted as “***” for the p-values between 0 and 1*10-3; “**” for the p-values 

between 1*10-3 and 0.01; “*” for the values between 0.01 and 0.05; ‘.’ for the p-values between 0.05 and 

0.10; and ‘-‘ for p-values above 0.10. 

When considering the neighbourhood level effects, an association between the occupational status 

and building energy efficiency levels emerges. Compared to the proportion of the high 

occupational groups, the proportional increase of either middle or low occupational groups is 

correlated with an increase in heat energy consumption, indicating poorer energy performance of 

buildings.  Furthermore, between the middle and low occupational groups, the proportional 

increase of the low occupational groups is associated with a bigger increase in heat energy 

consumption compared to the middle occupational groups. These observations further strengthen 

the notions described by Bouzarovski and Simcock (2017) on domestic energy deprivation being 

strongly associated with household income, as in Riga, more vulnerable socio-economic groups 

experience worse building energy performance. However, as the predictive model exhibited the 

highest error values, these results will be considered only in combination with other areas. All the 

variables are below the set threshold of VIF values, describing the suitable levels of collinearity 

between the independent variables of the model. 

4.3.3. Vilnius, Lithuania 

The results of the multilevel model for building energy consumption per square metre for Vilnius 

are summarised in Table 9. On the building level, as with the previous two models, the building 

age increase is strongly associated with an increase in building energy consumption. However, the 

dynamics of other building-level variables are different compared to the previous two models. First 

of all, in the case of the Vilnius model, the differentiation between the types of housing is not 

statistically significant. Furthermore, as the energy labels in Lithuania, out of which the 

consumption values were computed, are strongly associated with variations of building element 

thermal transmission, the renovation grants are associated with a significant decrease in building 

energy consumption. Finally, the building's heated area is negatively associated with building 

energy consumption, describing smaller buildings overall to have worse energy performance. 

Table 9. The results of the multilevel model for total annual energy consumption per square metre 

for Vilnius, Lithuania. 

 Estimate Std. Error p-value Significance VIF 
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Intercept 185.80 23.50 3.49 * 10-15  - - 

Building age 20.93 1.85 < 2.00 * 10-16 *** 1.37 

Renovation grants (YES = 1) -41.72 3.67 < 2.00 * 10-16  *** 1.02 

Multi-apartment building (YES = 1) 30.33 23.50 0.20  - 1.05 

Total heated area  -4.91 1.69 2.78 * 10-3  ** 1.29 

Russian-speaking population (n) -2.04 2.81 0.48 - 2.07 

Polish-speaking population (n) -11.48 3.85 2.95 * 10-3  ** 3.70 

Population with other mother tongues (n) -8.65 2.54 7.10 * 10-4  *** 1.79 

Middle occupational groups (n) -0.23 2.09 0.91 - 1.08 

Low occupational groups (n) 14.59 4.88 2.88 * 10-3 ** 5.77 

People aged 0-14 (n) -8.63 3.37 0.01 * 2.83 

People above 65 years of age (n) -8.29 2.86 3.88 * 10-3  ** 2.27 

 

Note: Significance codes are denoted as “***” for the p-values between 0 and 1*10-3; “**” for the p-values 

between 1*10-3 and 0.01; “*” for the values between 0.01 and 0.05; ‘.’ for the p-values between 0.05 and 

0.10; and ‘-‘ for p-values above 0.10. 

The neighbourhood-level variables describe several trends that potentially impact the energy 

efficiency of housing. The increase in the proportion of low occupational groups compared to the 

high occupational groups is associated with higher total annual building energy consumption and 

thus worse energy performance. This, together with the impacts of building renovation activities, 

can potentially hinder the overall inaccessibility of climate and energy transition interventions for 

lower socio-economic groups compared to high socio-economic groups (Grossmann, 2019; Umit 

et al., 2019; Albrecht and Hamels, 2021; Bardazzi et al., 2021). When considering the ethnic 

neighbourhood variables, an increase in the proportion of people with Polish or languages other 

than Lithuanian, Russian, and Polish is associated with a lower building-level energy consumption 

compared to the proportion of people with Lithuanian as their mother tongue. This, however, can 

be partially attributed to the higher shares of individuals with Lithuanian as their mother tongue 

living in the Vilnius inner city (Valatka et al., 2016), which, based on Figure 8, has a higher median 

building energy consumption value. 
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5. Discussion and conclusions 

A set of classification and regression machine-learning algorithms was tested to create a unified 

modelling framework for building energy performance prediction at the urban level. Working with 

the existing availability of data, the study identified the random forest classification algorithm to 

be the most suitable for the development of the modelling framework, primarily due to the lowest 

median absolute deviation values and error distribution curves. Even as XGBoost for the 

classification tasks performed with the same median absolute deviation values, its performance 

based on mean absolute error and root mean squared error was worse by 0.19 and 0.11, 

respectively. When adapting the modelling framework from Tallinn to Riga and Vilnius, 

substantial variations of the performance indicators were observed. From the perspective of 

median absolute deviation and median absolute percentage error, the adapted modelling 

framework for Vilnius residential building stock performed the best, whereas the values of mean 

absolute error and root mean squared error were lowest for Riga. Importantly, however, the highest 

median absolute percentage error and median absolute deviation values were observed for the 

modelling framework application for Riga. Thus, when considering the following trends and 

patterns from the multilevel models, the results of Riga were used as accompanying, rather than 

distinctive, results. 

When considering the identified building characteristics of low energy efficiency based on the 

results of mapping and multilevel models, an overlapping pattern emerges. Building age positively 

correlates with annual energy consumption, reflecting lower energy efficiency of older building 

stock. The observation can be seen from the mapping of results for Tallinn and Riga, where the 

neighbourhoods with higher shares of pre-socialist buildings are also associated with higher 

median energy consumption values per square meter, as well as the multilevel model results of all 

three cities, where the building age had a significant positive relationship with building energy 

consumption values. In the case of Vilnius, the mapping of the existing and predicted energy 

consumption values did not identify such a relationship, as the neighbourhoods of the worst energy 

efficiency were quite diverse from the point of view of housing structures. It can potentially be 

attributed to the underrepresentation of the pre-socialist housing in Vilnius and the associated 

dataset used in the study. However, from other trends observed in the study, the pre-socialist 

housing of the inner cities can be seen as the most inefficient from an energy consumption 

perspective. Furthermore, in all three cities, the neighbourhoods of post-socialist housing 

developments have the lowest median energy consumption values and consequently better energy 

efficiency. 

The results of the study associated with housing typologies are more heterogeneous across the 

three cities. In the case of Tallinn, even as some of the neighbourhoods of predominantly detached 

dwellings, particularly in the case of Haabersti and Pirita, exude the lowest energy performance 

values, the results of the multilevel model show slightly increased energy performance values 
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overall for the detached dwellings compared to multi-apartment buildings. This potentially can be 

attributed to the higher median building energy consumption values in the neighbourhoods of 

Nõmme and the developed pre-socialist detached housing stock. In the case of Riga, however, the 

multi-apartment buildings are associated with higher energy consumption values and thus, worse 

energy efficiency, potentially stemming from a substantial share of pre-socialist housing in the 

multi-apartment building stock. Here, the interactions between the building age and housing type 

play a stronger role, compared to the housing types individually. Finally, the analysis of the 

association between housing type and energy consumption in Vilnius did not yield a statistically 

significant association. Thus, the housing type cannot be considered as an overarching determinant 

of energy efficiency between all three capital cities, based on substantial differences in the results. 

When considering the neighbourhood composition effects, the occupational group distribution on 

the neighbourhood level had the biggest impact on the housing energy efficiency.  Between the 

cities, in the case of Vilnius and Riga, a common dynamic was established: the increase of the 

proportion of low occupational groups on the neighbourhood level is correlated with an increase 

in building energy consumption within the neighbourhood, meaning that lower socio-economic 

status groups tend to live in the housing with worse energy efficiency. This, furthermore, posits an 

additional risk associated with an increased susceptibility to energy poverty (Bouzarovski and 

Simcock, 2017; Barrett et al., 2022), as well as describes the overall inability to participate in the 

energy transition (Koďousková and Bořuta, 2022). Simultaneously, the observed trends describe 

an overall association between the higher shares of high occupational groups on the neighbourhood 

level being associated with better building energy performance. It signifies the overrepresentation 

of high occupational groups in energy-efficient housing, either through living in newer or 

renovated housing.  From this perspective, the case of Tallinn is an outlier based on the statistically 

significant variable interactions. Only the proportional increase of middle occupational groups in 

the neighbourhood has been identified to lower the building-level energy consumption. Here, 

however, the simultaneous overrepresentation of high occupational groups in the inner city with 

pre-socialist housing and in the neighbourhoods of newer detached housing can be attributed to 

the identified heterogeneous patterns. Importantly, no overarching patterns associated with age or 

ethnic population distribution were observed in the three capital cities, with only in the exception 

of Vilnius. 

Overall, the identified occupational inequalities in access to energy-efficient housing are not 

addressed in the policy frameworks of energy poverty and energy efficiency. From the perspective 

of three policy frameworks, the case of Vilnius and Lithuania shows the biggest emphasis on the 

reduction of inequalities associated with energy efficiency and costs, yet they insufficiently 

address the minimisation of energy efficiency gaps between the occupational groups. In Annexe 

II, two mechanisms of energy poverty reduction were identified in Lithuania, which were the 

provision of the heating allowance and the additional support for the beneficiaries of the heating 

allowance in the facilitation of multi-apartment building renovation projects. However, the impacts 



52 

 

of such policies are not observed on the urban level, as the increase of low occupational groups in 

the neighbourhood was associated with worse building-level energy performance. However, the 

question of recognition justice has a bigger role in the outcomes associated with the inequality 

reduction. The definitions of energy poverty are linked to receiving a heating allowance across the 

countries. For instance, the developed legal definition of energy-poor households in Latvia focuses 

only on low-income households receiving additional support for household expense coverage 

(Latvijas Vēstnesis, 2024). Such definitions substantially limit the share of the population eligible 

for the instruments associated with energy inequality reduction, as, based on the results of the 

study, much larger shares of the population experience inequalities associated with energy-

efficient housing access and subsequent risks of energy poverty stemming from it. 

When comparing the approaches, policy frameworks in Lithuania focus on distributive justice 

facilitation through a set of activities and financial mechanisms of energy poverty reduction. In 

contrast, within the context of Latvia, the planning documents primarily highlight the need for 

recognition justice by adoption of a legal definition of energy poverty, with lower emphasis on the 

instruments associated with distributive energy justice. Only one instrument of support – the 

facilitation of the renovation of the 2017 dwellings for energy-poor households – was identified to 

reduce the observed inequalities in Latvia. Here, the case of the Estonian policy framework is an 

outlier, as, from the point of view of recognition justice, energy poverty was not deemed as a 

relevant issue, yet simultaneously, distributive justice facilitation mechanisms were identified. 

Within the national framework of Estonia, the development of the Housing Investment Fund, as 

envisioned within the Estonian Resilience and Recovery Plan, can potentially enable a more just 

energy transition to target not only more vulnerable areas but also the vulnerable households more 

directly. However, between all three countries, the EU-level initiatives and policies addressing 

energy inequalities are far stronger compared to the national ones. Here, the updated National 

Building Renovation Plans with stronger inclusion of inequality alleviation measures will provide 

a better policy action basis for facilitating energy justice, compared to the existing efforts, if 

addressed by the Member States in a way that is requested within the 2024 recast of EPBD. 

Several examples of European policy instruments concerning energy poverty and energy justice 

alleviation measures exist. A summary overview of some of the policies that have been identified 

and implemented is provided in Annexe II. As the assessment results identified socio-economic 

status as a determinant of access to energy efficiency measures, providing targeted individual-level 

support for low-income households is necessary to reduce the inequalities between the groups. In 

France, for instance, several instruments are already established: low-income households receive 

energy checks that can be used to either pay for energy bills or renovation activities, the building 

renovation programme’s support is varied by the household income levels, as well as the energy 

suppliers are obligated to work with energy-poor populations to reduce their energy consumption 

as the part of the national energy trading system. The identified patterns of inequality require more 

consideration and potential change of the structures associated with the receipt of building 
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renovation instrument support. Within the context of the three countries, the support is currently 

provided at the building or association of apartment owners level rather than the household level. 

Here, more direct support to socio-economically vulnerable households, such as energy checks for 

energy efficiency improvement, can be used as the energy justice facilitation instrument within the 

context of all three countries. 

The results of the study, furthermore, revealed the need for a stronger focus on pre-socialist 

housing when considering the designs of the programmes of building renovation due to the biggest 

potential for energy consumption savings. Here, however, the notions of just transition of this 

housing segment are even more important, as the potential economic burden of lower socio-

economic groups is higher due to the methods of renovation of buildings with architectural value. 

The observed dynamics must require a design framework of a support instrument to 

simultaneously target housing and household segments, as the targeting of only the housing 

segment can result in a substantial overrepresentation of high socio-economic groups due to their 

presence in pre-socialist housing. This, potentially, can result in the design of renovation subsidies 

in a way where individual households receive various levels of support based on their socio-

economic status, similarly to France (refer to Annexe II), as well as the housing segment. The 

proposed approach simultaneously tackles the gaps observed in access to energy-efficient housing 

and its distribution between the different population groups with the housing market segmentation 

from the point of view of energy efficiency. 

There are three overall limitations to the presented study. First, the structures of the energy 

performance certificate and the described energy variables differ between the countries and cities 

of assessment. Subsequently, if the goal of the work had not been the creation of a unified 

methodology for building energy performance assessment, the use of different machine learning 

algorithms per the city of action for the model development could have been performed. Second, 

the structures of the building registry datasets between the three countries are varied and different 

variables are used. This resulted in slight variations within the final models based on the data 

availability. Furthermore, the lack of publicly available building registry data for residential 

buildings in Vilnius required the use of a dataset, where a very small sample of detached housing 

was present, thus reducing the ability to facilitate the analysis of all housing segments. Finally, the 

selected level of aggregation in all the cities was used due to data availability. Even though the 

multilevel model is a suitable method for statistical analysis and inequality pattern identification, 

applying dwelling or building-level data could provide additional insights into the variabilities and 

trends associated with energy inequalities. However, even as a set of limitations is presented, the 

work created a unified methodology for building energy performance prediction and subsequent 

application for assessing urban-level energy inequalities in three national contexts. 
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Patterns of inequalities in housing energy efficiency and links with population 

risk factors in Tallinn, Riga and Vilnius  

 

Kirils Gončarovs 

Summary 

 

The inequalities related to access to energy-efficient housing are not sufficiently addressed within 

the context of the Baltic countries. To minimise the knowledge gap, the work aimed to identify the 

underlying population inequalities associated with access to energy-efficient housing based on the 

energy performance certificate data. However, as the certificate data are scarce, the study 

methodologically aimed to develop a machine-learning-based modelling framework to predict 

building energy performance at the urban level. The machine-learning-based modelling framework 

was applied in the context of open-source data availability on the building stock in Tallinn, Riga, 

and Vilnius. 

To facilitate the development of the modelling framework, ten different classification and 

regression algorithms were compared based on the set of global indicators for the model for 

Tallinn, Estonia. The selection process resulted in identifying a random forest classification 

algorithm for building energy labels as the most suitable solution. The approach was replicated for 

Vilnius and Riga, and the predicted building energy efficiency datasets were generated. However, 

the variability of the global metrics associated with the model performance varied substantially 

across the models, with the best performance being observed for the application of the modelling 

framework for Vilnius, and the worst performance being observed for Riga. 

After the application of the modelling framework for the capital cities, the neighbourhood or grid-

level population datasets were applied together with the building-level characteristics to evaluate 

dwelling-level standardised building energy performance metrics in a series of multilevel models 

to assess the variations of energy costs based on population variables. The study revealed a strong 

association between the occupational status and access to energy-efficient housing: both in Riga 

and Vilnius, a statistically significant correlation between the proportion of low occupational 

groups on the neighbourhood level and the energy performance of buildings was observed, with 

higher proportions being associated with worse performance. However, other overlapping patterns 

of inequalities between the three countries were not observed. The work concluded that the existing 

inequalities of access to energy-efficient housing within the context of the capitals in the Baltic 

countries should be primarily understood through the prism of socio-economic and occupational 

inequalities, which are not sufficiently addressed within the current policy frameworks associated 

with energy efficiency and energy poverty. 
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Eluasemete energiatõhususe ebavõrdsuse mustrid ja seosed 

elanikkonna riskiteguritega Tallinnas, Riias ja Vilniuses 

 

Kirils Gončarovs 

 

Kokkuvõte 

Ebavõrdsust, mis on seotud juurdepääsuga energiatõhusale eluasemele, ei ole Balti riikide 

kontekstis piisavalt käsitletud. Teadmiste puudujäägi vähendamiseks oli töö eesmärk kindlaks teha 

energiatõhusate eluruumide kättesaadavusega seotud ebavõrdsus, mis põhineb energiamärgise 

andmetel. Kuna aga sertifikaadiandmeid on vähe, oli uuringu metodoloogiline eesmärk töötada 

välja masinõppepõhine modelleerimisraamistik, et prognoosida hoonete energiatõhusust 

linnatasandil. Masinõppel põhinevat modelleerimisraamistikku rakendati Tallinna, Riia ja 

Vilniuse hoonete kohta kättesaadavate avatud andmete kontekstis. 

Modelleerimisraamistiku väljatöötamise hõlbustamiseks võrreldi kümmet erinevat 

klassifitseerimis- ja regressioonalgoritmi, mis põhinesid Tallinna, Eesti üldiste näitajate andmetel 

loodud mudelil. Valikuprotsessi tulemusel tuvastati kõige sobivamaks lahenduseks hoonete 

energiamärgiste jaoks otsustusmetsa (Random Forest) klassifitseerimise algoritm. Lähenemist 

korrati Vilniuse ja Riia puhul ning genereeriti prognoositud hoonete energiatõhususe 

andmekogumid. Mudelite tulemuslikkusega seotud globaalsete mõõdikute varieeruvus varieerus 

siiski oluliselt, kusjuures parimad tulemused täheldati Vilniuse puhul modelleerimisraamistiku 

rakendamisel ja halvimad tulemused Riia puhul. 

Pärast mudeli rakendamist pealinnade andmetel kasutati naabruskonna või võrgustiku tasandi 

elanikkonna andmekogumeid koos hoonete tasandi näitajatega, et hinnata eluruumide tasandil 

standardiseeritud hoone energiatõhususe näitajaid mitmetasandiliste mudelite abil, et hinnata 

energiakulude varieerumist sõltuvalt elanikkonna muutujatest. Uuring näitas tugevat seost ameti 

ja energiatõhusate eluruumide kättesaadavuse vahel: nii Riias kui ka Vilniuses täheldati 

statistiliselt olulist korrelatsiooni madala kutsestatuse taseme ja hoonete energiatõhususe vahel, 

kusjuures suurem osakaal oli seotud kehvema energiatõhususega. Muid kattuvaid ebavõrdsuse 

mustreid kolme riigi vahel siiski ei täheldatud. Töös jõuti järeldusele, et olemasolevat ebavõrdsust 

energiatõhusate eluasemete kättesaadavuse osas Balti riikide pealinnade kontekstis tuleks mõista 

eelkõige sotsiaalmajandusliku ja kutsealase ebavõrdsuse kaudu, mida ei ole praegustes 

energiatõhususe ja energiavaesusega seotud poliitikaraamistikes piisavalt käsitletud.  
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Annexes 

Annexe I. Datasets used in the study 

Tallinn 

Name: Buildings from the Estonian Topographical Database with Building 

Registry data 

File format: .GPKG 

Description: A dataset containing the combined information on the buildings from the 

Estonian Topographical Database and Building Registry. Energy 

performance certificate information is included in the Building Registry. 

Type: Vector (Polygon) 

Temporal extent: Last updated: 02/11/2024 

Spatial extent: N: 6633595.3269999995827675 

S: 6377179.0940000005066395 

W: 370011.2199999988079071 

E: 738969.5490000024437904 

CRS: EPSG:3301 

Provider: Maa- Ja Ruumiamet, Kliimaministeerium 

Date of acquisition: 05/11/2024 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: KredEx building renovation grant utilisation 

File format: .CSV 

Description: A temporal dataset of KredEx renovation grant distribution for multi-

apartment buildings. 

Type: Attribute table 

Temporal extent: 09/30/2010 – 04/10/2023 

https://geoportaal.maaamet.ee/index.php?lang_id=1&plugin_act=otsing&andmetyyp=ETAK&dl=1&f=tuletiskihid-etak_ehr_hooned_gpkg.zip&page_id=609
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Spatial extent: NA 

Provider: Kliimaministeerium 

Date of acquisition: 17/05/2024 

Access level: Restricted access 

Link: NA 

 

Name: Statistical neighbourhoods of Tallinn with population variables 

File format: .SHP; .CSV 

Description: A dataset of Tallinn divided into 230 statistical neighbourhoods with 

three categories of variables: 

Type: Vector (Polygons) 

Temporal extent: 31/12/2021 

Spatial extent: N: 6606228.2819000007584691 

S: 6579478.3634999990463257 

W: 531218.1688999980688095 

E: 552564.0905000014463440 

CRS: EPSG:3301 

Provider: Anneli Kährik, University of Tartu 

Date of acquisition: 08/06/2024 

Access level: Restricted access 

Link: NA 

Riga 

Name: Building cadastre attribute data 

File format: .XML 

Description: A collection of XML files for the attribute data for the buildings. XML 

files were converted to CSV with a Python script. From the files, the 

building cadastre code, name, construction area, floors, and year of 

exploitation were exported during the file format change. 

Type: Attribute data 
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Temporal extent: Last updated: 29/09/2024 

Spatial extent: NA 

Provider: Valsts zemes dienests 

Date of acquisition: 05/10/2024 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Building cadastre spatial data 

File format: .SHP 

Description: Building cadastre spatial data contains information about the spatiality 

and parcel codes for Riga. The dataset is split into 128 cadastral groups 

in Riga. Parcel codes were used to link spatial and attribute cadastre data 

for buildings. 

Type: Vector (Polygon) 

Temporal extent: Last updated: 29/09/2024 

Spatial extent: N: 328540.6270000003278255 

S: 301544.7369999997317791 

W: 494913.3839999996125698 

E: 519729.6189999999478459 

CRS: EPSG:3059 

Provider: Valsts zemes dienests  

Date of acquisition: 05/10/2024 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Energy performance certificate data 

File format: .CSV 

Description: A database of all the available attribute variables of the energy 

performance, without the associated building identification code. 

Type: Attribute data 

https://data.gov.lv/dati/lv/dataset/kadastra-informacijas-sistemas-atvertie-dati/resource/9fe29b57-07cd-4458-b22c-b0b9f2bc8915
https://data.gov.lv/dati/lv/dataset/kadastra-informacijas-sistemas-atverti-telpiskie-dati
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Temporal extent: Last updated: 24/11/2023 

Spatial extent: NA 

Provider: Būvniecības valsts kontroles birojs 

Date of acquisition: 25/11/2023 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Energy performance certificate cadastre objects 

File format: .CSV 

Description: A database of the cadastre object identification data and associated 

energy performance certificate data. The cadastre object and energy-

related data were linked through the number of the energy performance 

certificate number. 

Type: Attribute data 

Temporal extent: Last updated: 24/11/2023 

Spatial extent: NA 

Provider: Būvniecības valsts kontroles birojs 

Date of acquisition: 25/11/2023 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Building renovation projects financed by ALTUM 

File format: .XLSX 

Description: A spreadsheet containing the information about the acquisition of the 

building renovation grants in Latvia for the 2016-2023 ALTUM 

programme. Connected to the other data through the building address. 

Type: Attribute data 

Temporal extent: Last updated: 31/12/2023 

Spatial extent: NA 

https://data.gov.lv/dati/dataset/bis_ygdi8jmgg-bneuijz7wiwq
https://data.gov.lv/dati/dataset/bis_ygdi8jmgg-bneuijz7wiwq
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Provider: ALTUM 

Date of acquisition: 11/02/2025 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Building address data 

File format: .SHP 

Description: Dataset of all building addresses used to the extent of Riga. The dataset 

used to spatially link ALTUM building renovation grants and building 

cadastre data. 

Type: Vector (Points) 

Temporal extent: Last updated: 22/02/2025 

Spatial extent: N: 326568.0000000000000000 

S: 301566.6000000000349246 

W: 496251.7820000000065193 

E: 519529.5706180345732719 

CRS: EPSG:3059 

Provider: ALTUM 

Date of acquisition: 22/02/2025 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Riga population characteristics divided into grid cells 

File format: .SHP 

Description: Riga population characteristics divided into grid cells of a size of 1 

square kilometre. In total, 280 units are represented. The population 

characteristics include the largest ethnic groups, the division of workers 

into three occupational groups, and three age groups. 

Type: Vector (Polygons) 

Temporal extent: 31/12/2021 

https://www.altum.lv/wp-content/uploads/2024/01/publ_dme_progress_uz_31-12-2023-1.xlsx
https://data.gov.lv/dati/lv/dataset/varis-atvertie-dati/resource/b643b1b3-223f-4394-9beb-18524f8b0b82
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Spatial extent: N: 327000.0000000009313226 

S: 300999.9999999990686774 

W: 495999.9999999998835847 

E: 520000.0000000000000000 

CRS: EPSG:3059 

Provider: Māris Bērziņš, University of Latvia 

Date of acquisition: 30/01/2025 

Access level: Restricted access 

Link: NA 

Vilnius 

Name: Buildings with associated heating indicators 

File format: .SHP 

Description: A building dataset, which includes all structural and heating information 

about the buildings in Vilnius, including information about the 

facilitation of renovation activities. The dataset is primarily for multi-

apartment buildings. Does not include energy performance certificate 

data. 

Type: Vector (Polygons) 

Temporal extent: Last updated: 06/11/2024 

Spatial extent: N: 6075900.7651000004261732 

S: 6050592.4375000018626451 

W: 569237.5830000005662441 

E: 594353.1001000003889203 

CRS: EPSG:3346 

Provider: Vilniaus miesto duomenų centras|  

Date of acquisition: 31/12/2024 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Energy performance certificate data 

https://data-vplanas.opendata.arcgis.com/datasets/vplanas::daugiabu%C4%8Di%C5%B3-%C5%A1ildymo-rodikliai/explore?location=54.703243%2C25.270527%2C11.16
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File format: .CSV 

Description: A dataset containing all the data related to the energy performance 

certification of a building. Linked to the building dataset through the 

address. 

Type: Attribute data 

Temporal extent: Last updated: 01/01/2025 

Spatial extent: NA 

Provider: Statybos sektoriaus vystymo agentūra 

Date of acquisition: 02/01/2025 

Access level: Publicly-available 

Link: Hyperlink to the source 

 

Name: Vilnius neighbourhood population characteristics 

File format: .SHP; .XLSX 

Description: A dataset containing the population data of Vilnius, divided into 872 

neighbourhoods in the city. The data contains all the associated ethnic, 

age group, and occupational variables relevant to the study. 

Type: Vector (Polygons) 

Temporal extent: 31/12/2021  

Spatial extent: N: 6078140.3430000003427267 

S: 6048670.1071000006049871 

W: 566166.9610000001266599 

E: 595515.8850000001257285 

CRS: EPSG:3346 

Provider: Rūta Ubarevičienė, The Lithuanian Centre for Social Sciences 

Date of acquisition: 22/10/2024 

Access level: Restricted access 

Link: NA 

 

 

https://www.ssva.lt/registrai/pensreg/pensert_list.php?q=(PEN~contains~A)&orderby=dPEN
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Annexe II. Gathered policy action examples in Europe 

Country Type of measure Measure Reference Comment 

Lithuania Direct financial 

Compensation 

for heating costs 

of the dwelling 

Seimas of the Republic of 

Lithuania, Law on Cash 

Social Assistance for Low-

Income Families (Single 

Residents) (Law No. IX-

1675), (2003) 

During the heating season, low-income 

households are eligible for partial 

compensation of the heating expenses. It is 

constructed of the difference in the state-

supported income per family and the total costs 

of heating exceeding a certain threshold (25%) 

of overall expenses. 

Catalonia 

(Spain) 
Administrative 

Security from 

energy supply 

cuts for energy-

poor households 

Comunidad Autónoma de 

Cataluña, BOE-A-2015-

9725 Ley 24/2015, de 29 de 

julio, de medidas urgentes 

para afrontar la emergencia 

en el ámbito de la vivienda 

y la pobreza energética, 

(2015). 

For the households considered at risk of 

residential exclusion, the right of access to 

basic supplies of drinking water, gas, and 

electricity is guaranteed. 

France Direct financial 

Provision of 

energy checks 

to the low-

income 

households 

Government of the French 

Republic, Chapter IV: 

Protection of consumers in 

situations of energy poverty 

(Articles L124-1 to L124-

5), (2024). 

Households falling under a certain income 

threshold  are provided with energy checks, 

which can be used for the payment of energy 

bills or renovation activities 

France Energy Efficiency 

Building 

renovation 

subsidies 

Gouvernement de la 

République française, 

Décret n° 2020-26 du 14 

janvier 2020 relatif à la 

prime de transition 

énergétique - Légifrance, 

(2024) 

The national subsidy for the building 

renovation programme, in which the amount of 

funding is varied by the income category of a 

household, providing the highest benefits to the 

low-income households 

Denmark Direct financial 

Heating 

supplements for 

pensioners 

Beskæftigelsesministeriet, 

Bekendtgørelse om social 

pension (førtidspension, 

seniorpension og 

folkepension), (2023) 

The heating allowance provides direct support 

to the pensioners to pay for their energy bills, if 

they exceed an annual expense threshold 

Ireland Direct financial 
Fuel Allowance 

Scheme 

Department of Social 

Protection of the Republic 

of Ireland. (2024, February 

15). Operational 

Guidelines: Fuel 

Allowance Scheme. 

GOV.IE. 

Fuel Allowance is a type of payment for low-

income households or households receiving 

other types of state support. The payments to 

households are performed either on a weekly 

basis or bi-seasonally between the end of 

September and April (28 weeks total). In the 

2023-2024 season, the weekly allowance rate 

was 33 EUR. 

The 

Netherlands 
Energy Efficieny 

Nationaal 

Warmtefonds 

zero-interest 

rate loans for 

building 

renovation 

Ministerie van 

Binnenlandse Zaken en 

Koninkrijksrelaties. (2022, 

September 14). Geen rente 

voor mensen met kleinere 

portemonnee die huis 

In 2022, the Nationaal Warmetefonds started 

providing zero-interest loans for building 

renovation for low-income households. 
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willen verduurzamen, 

Rijksoverheid. 

France Energy Efficieny 

White 

Certificate 

Scheme 

Ministère de la Transition 

écologique et de la 

Cohésion des territoires, 

Code de l’énergie Partie 

législative Chapitre Ier : Le 

dispositif des certificats 

d’économies d’énergie, 

(2021) 

White certificate scheme operates as an Energy 

Trading System for French energy providers. It 

distributes a certain amount of certificates, 

which correspond with the maximum energy 

production capacity in order to decrease energy 

production and motivate the energy provider 

companies to facilitate the energy efficiency 

improvements in different sectors. In Article L. 

21-1-1, a framework of facilitation of energy 

obligations via the work with energy-poor 

populations for their benefit is stated. 

Portugal Direct financial 
Social energy 

tariff 

DA INOVAÇÃO E DO 

DESENVOLVIMENTO 

MINISTÉRIO DA 

ECONOMIA, Decreto-Lei 

n. 138-A/2010 de 28 de 

Dezembro, (2010) 

To ensure that all consumers have access to the 

electricity supply, the social electricity tariff is 

established to create a stable electricity tariff 

with lower annual inflation (1%). The social 

electricity tariff is a part of the social security 

system of Portugal 

United 

Kingdom 
Direct financial 

Warm Home 

Discount 

Scheme 

Department for Business, 

Energy & Industrial 

Strategy. Warm Home 

Discount: Better targeted 

support from 2022, 2021 

The Warm Home Discount is a key policy in 

the UK combating energy poverty since 2011. 

It operates as electricity bill rebates for different 

core groups of households, which receive social 

benefits. The Warm Home Discount scheme 

has additional targets for energy-poor 

populations. 

United 

Kingdom 
Direct financial 

Cold Weather 

Payment 

ADM Chapter L4: Cold 

Weather Payments , 

Government of the United 

Kingdom (2020). 

Between November 1 and March 31, if the 

average temperature in the area is below 0°C, 

the households receiving social benefits will 

receive a 25£/week payment. 

United 

Kingdom 
Direct financial 

Winter Fuel 

Payment 

Thurley, D., Mcinnes, R., 

& Kennedy, S. (2019). 

Winter Fuel Payments 

update (CBP-6019). 

Winter Fuel Payment is a one-time payment per 

heating season for the population older than 66 

years. 

United 

Kingdom 
Energy Efficiency 

Better Energy 

Warmer Homes 

Scheme 

Sustainable Energy 

Authority of Ireland. 

(2023). Better Energy 

Warmer Homes Scheme 

Scheme and Application 

Guidelines 

The Scheme provides free energy efficiency 

updates for eligible homes, including attic 

insulation, cavity, external, and internal wall 

insulation, window replacement, heating 

system and ventilation updates, and lighting 

upgrades. The beneficiaries of the scheme 

include households receiving fuel allowance or 

other types of social benefits 



81 

 

Northern 

Ireland 

(United 

Kingdom) 

Energy Efficiency 

Affordable 

Warmth 

Scheme 

Northern Ireland Housing 

Executive. Affordable 

Warmth Scheme. Housing 

Executive. Retrieved 

March 23, 2024, from 

https://www.nihe.gov.uk/h

ousing-help/affordable-

warmth-boiler-

replacement/affordable-

warmth-scheme 

The scheme is focused on energy poverty 

alleviation in private housing (social housing is 

not eligible) with a grant of to 10,000.00£ for 

energy efficiency measures divided into four 

levels of priority: 

insulation/ventilation/draught-proofing 

(focusing on the roof and basement); 

replacement of the heating system; replacement 

of windows; and solid wall insulation (the last 

level priority due to the expenses) 

Ireland Energy Efficiency 
Housing Aid for 

Older People 

Department of Housing, 

Local Government and 

Heritage of the Republic of 

Ireland (2023, December 

19). Housing Aid for Older 

People GranT. Gov.Ie. 

https://www.gov.ie/en/serv

ice/1ca60-housing-aid-for-

older-people-grant/ 

The scheme focuses on providing support for 

renovating the building for the elderly 

population, prioritising the elderly population 

with medical needs and low income. The 

maximum sum of the grant is 8,000.00 EUR, 

which may cover up to 95% of the approved 

costs. The grant can be for different types of 

essential repairs including door and window 

replacement, central heating system 

repairments, or roofing updates. 

Finland Direct financial 

General 

Housing 

Allowance 

Kansaneläkelaitos. General 

housing allowance. Kela. 

Retrieved March 23, 2024, 

from 

https://www.kela.fi/general

-housing-allowance 

The General Housing Allowance is provided 

for low-income households to cover up to 80% 

(from April 1, 2024, to 70%) of housing 

expenses. In addition, pensioners with a low 

income can receive a Housing allowance for 

pensioners, which equals 85% of the total 

housing costs. 

Lithuania Energy Efficiency 

Support of 

vulnerable 

populations in 

building 

renovation 

Lietuvos Respublikos 

Aukščiausioji Taryba - 

Atkuriamasis Seima (2024) 

I-2455 Lietuvos 

Respublikos valstybės 

paramos daugiabučiams 

namams atnaujinti 

(modernizuoti) įstatymas. 

Vilnius: Lietuvos 

Respublikos Aukščiausioji 

Taryba - Atkuriamasis 

Seima. Available at: 

https://www.e-

tar.lt/portal/en/legalAct/TA

R.9D04F98F7C14/ewjiwS

YIND (Accessed: 24 

March 2025). 

Within the Multi-Apartment Building 

Modernisation Programme, households eligible 

for the heating allowance can apply for public 

support to cover the remaining housing 

renovation costs. The household receives the 

full cost subsidy for the renovation activities if 

approved. 

 

  

https://www.e-tar.lt/portal/en/legalAct/TAR.9D04F98F7C14/ewjiwSYIND
https://www.e-tar.lt/portal/en/legalAct/TAR.9D04F98F7C14/ewjiwSYIND
https://www.e-tar.lt/portal/en/legalAct/TAR.9D04F98F7C14/ewjiwSYIND
https://www.e-tar.lt/portal/en/legalAct/TAR.9D04F98F7C14/ewjiwSYIND
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