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Introduction

The European Union has the goal of becoming climate-neutral by 2050 [1]. Climate-
neutrality is defined by net-zero greenhouse gas emissions. The European Commission’s
vision includes among the main strategic building blocks energy efficiency (including
zero emission buildings), maximising the deployment of renewables and the use of
electricity, and developing interconnections [2]. One approach applied for improving
energy efficiency is to replace less efficient devices with more efficient ones (for example
incandescent lights with LED lights). At the same time there is a technological shift
towards using electrical vehicles instead of vehicles with internal combustion engines to
decrease the CO, emissions and dependence on fossil fuels. The load device replacement
by more efficient devices and increasing consumption of electrical transport will slowly
transform the load composition. A different composition of loads responds differently to
changes of system parameters and leads to different power consumption patterns.

The behaviour of power systems is modelled for increasing situational awareness, opti-
mising operation and planning the development of the system. In order to properly model
the behaviour, the load models included in the power system model need to reflect the
power consumption and behaviour of the loads to a sufficient level of accuracy. In the
case of power system models, typically loads are modelled at the power delivery buses
of the system. In the case of transmission systems, the power delivery bus is typically a
bus in the substation that supplies the distribution network or a large consumer. The load
models describe the total power consumption of the loads connected behind the power
delivery bus. Sometimes the models also describe the behaviour of the load. The state of
the power system is related to the voltages and frequency of the system. For this reason
many load models have the ability to describe the voltage and frequency dependence of
the load. The voltage characteristic of the load depends similarly to other properties of
the load on the load devices (and distributed generation) connected to the grid. In the
short run, the composition of connected devices changes due to switching and operation
of the load devices. In the long run, newer devices replace older devices (e.g. more vari-
able speed drives used in appliances) or technology shifts take place that affect consumer
habits (e.g. increasing amount of electrical vehicles). In addition, the composition of the
load devices connected to the grid depends on the weather, structure of the industry and
other factors.

The load models of the power system are often determined by applying a combination
of different methods. The power demands of the loads are typically obtained by process-
ing the measurement data (from the metering system or SCADA (Supervisory Control And
Data Acquisition)), and future values are forecast if needed. The approaches used for de-
termining the demand may take into account weather, time, and other aspects. Addition-
ally, the behaviour of the load needs to be described for more accurate simulations. The
load behaviour in the case of disturbances and system state changes depends on the com-
position of the devices connected to the grid at the time. There are several approaches
to estimating the aggregated response of loads connected to a power delivery point. See
Chapter 1 for an overview of the approaches. The load responses can be estimated based
on measurement data, literature or by a combined application of both. However, as the
load composition depends on many factors, the load models estimated for one grid can-
not be directly applied to other grids [3]. This claim is supported by the variability of load
characteristics estimated in different countries [4-9].

At the same time as changes on the load side, the capacity of renewable generation
(both in distributed and centralised generation form) is increasing. As stated above, max-
imising the deployment of renewables forms a part of the strategic vision of the Euro-



pean Commission. Furthermore, in the European Union this growth is supported by the
Energy Performance of Buildings Directive (2010/31/EU) [10]. According to the Energy
Performance of Buildings Directive, all new buildings have been required to be nearly
zero-energy buildings (NZEB) from the end of 2020. To achieve NZEB requirements, lo-
cal photovoltaic generation is often used in new buildings. This increases the amount of
Distributed Generation (DG) connected to the distribution network and demand variabil-
ity [11]. The increasing amount of renewable generation poses new challenges for the grid
operation [12]. As the controllability of generation is decreasing, there is a high interest
in increasing the flexibility of the demand. Among other methods Conservation Voltage
Reduction (CVR) has arisen. [13] defines CVR as the "practice of controlling the voltage
levels on the network in order to promote peak load relief and energy demand reduction,
considering that loads in the MV (Medium Voltage) networks are predominantly voltage
dependent". The achievable load reduction of CVR is strongly related to the voltage char-
acteristics of the loads [11, 14] - typically the loads have a positive voltage dependence
(decreasing the voltage decreases the load demand). The voltage sensitivity of the feeder
is used in [11] to estimate the available resource for CVR. In addition to the voltage charac-
teristics of the loads, the CVR is affected by the active power generation of DG [11,14-16]
along with the reactive power control method of the DG units [13]. CVR implementation
aspects are reviewed in [17].

Motivation and Background

The changes in load composition and the increasing penetration of renewable generation
have renewed the interest in load modelling. The load composition changes are slowly
altering the behaviour of the aggregated loads, which causes the need for renewing the
models. At the same time, the increasing penetration of renewable generation is pushing
the power systems closer to the limits: most of the transmission and distribution systems
were designed for handling a different power flow (from large thermal power plants to-
wards end consumers), and for that reason may not be optimal for the new situation. In or-
der to be able to utilise the existing system as close to the limits as possible, while sustain-
ing safe and reliable operation, accurate modelling of the system is vital. A good example
of the renewed interest is the work of the CIGRE (Conseil International des Grands Réseaux
Electriques - International Council on Large Electric Systems) working group 4.605, which
published a comprehensive report [18] in 2014. The report covers different approaches
for load model development and practices of the industry.

The increasing amount of renewables and decreasing amount of dispatchable gener-
ation has increased the interest in load flexibility. Increased load flexibility is viewed as
one source for balancing the intermittent renewable generation. The static load models
discussed in this thesis are related to the topic of CVR, which has come to light with an
increased need for demand flexibility. The estimation of aggregated transmission system
bus load models could provide insight into assessing the CVR potential of the Estonian
power system. However, conducting this assessment is not within the scope of this the-
sis.

Currently the Estonian power system is connected to the IPS/UPS system (Integrated
Power System / Unified Power System of Russia). There is a plan for desynchronising the
Estonian system from the IPS/UPS system and synchronising it to the synchronous grid
of Continental Europe (also known as Continental Synchronous Area) in 2025. In order to
prepare for this shift, investments have been made into the grid, and the future operation
of the system is analysed from several aspects. To properly model the system, accurate
system models are needed. Among other models of the system, the load models were
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taken under review by the Estonian transmission system operator Elering AS. A research
project was conducted at Tallinn University of Technology in the years 2015-2017, where
the modelling of static and dynamic characteristics of the loads of the transmission system
were analysed. This thesis started as a part of the project. Chapter 2 includes the results
of some of the case studies conducted for this project.

During the load modelling project there was a need for load model conversion in sev-
eral stages of the project. When the component-based load modelling approach was ap-
plied, the models found in the literature used different equations; some were exponential,
others ZIP models. In the case of model aggregation, it was easiest to use the ZIP mod-
els, because these can be aggregated by calculating the weighted sum’. When calculating
the weighted sum, the proportions of the power demands of the type loads are used as
the weights. This meant that the load models known by exponential models had to be
converted to ZIP models for the aggregation. Another potential use scenario was the uti-
lization of software tools, which require different model than was estimated originally. In
Estonia, PSS®E and PSCAD are widely used. PSS®E includes a variation of the ZIP model
(see Section 1.2.3 for more details), while PSCAD contains exponential load models (see
Section 1.2.2 for more details). As a result of the component-based load modelling ZIP
models were derived. The ZIP to exponential load model conversion was needed for ac-
quiring the exponential PSCAD load models. In addition to these two uses, the load model
conversion arises when ZIP or exponent models of loads are known, and a simulation soft-
ware with the other type of load models is adopted. Also, when plotting the load models
or comparing the values of different entities, the exponential models are often preferred
due to the smaller number of parameters. Thus, when ZIP models are known, they may
need to be converted for comparison and plotting.

Main Objectives and Tasks of the Thesis

This thesis has two main goals. Firstly, it aims to develop a methodology for estimating
static load models of aggregated transmission system bus loads based on the available
measurement data. The available measurement data from the Estonian transmission sys-
tem is used for testing the methodology. Secondly, it aims to benchmark static load model
conversion methods (ZIP to exponential, and exponential to ZIP load model conversion)
to assess the accuracy of the methods.

Based on the goals of the research and the literature, several hypotheses were formu-
lated:

e Existing measurement systems and historical measurement data of the transmis-
sion system can be used to estimate static load models of aggregated bus loads.

¢ The clustering of monthly energy consumption, disaggregated by load classes, can
be used to group aggregated loads into type groups. The loads can be modelled
with acceptable error by the type models.

e The event filtering based on properties of the measured event can improve the
precision of the estimated models.

e The measurement time and penetration of distributed generation are assumed to
have a significant impact on the estimated aggregated load characteristics.

e The conversion error of conversion methods differs.

"The standard approach to aggregation of polynomial component models by calculating the
weighted sum is described in [19-23].
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e A load model conversion with a lower conversion error (defined in Section 3.2) is
hypothesised to lead to a smaller mismatch of load flow calculations (load modelling
error in load flow).

Based on the hypotheses listed above, the following tasks were formulated for re-
search:

e Assess the usability of existing measurement systems for static load model estima-
tion.

¢ Implement or develop a method for grouping loads and selecting representative
loads (for type model identification and validation of grouping).

¢ Develop a methodology suitable for processing the available measurement data for
estimating the static load models of aggregated loads and assessing the precision
of the estimated models.

¢ Identify how the measurement time and penetration of distributed generation af-
fect the estimated load models.

¢ Analyse and compare the conversion error of load model conversion methods.

e Assess the impact of load model conversion error on load flow results based on a
case study.

Contribution of the Thesis and Dissemination

Theoretical Novelty of the Work
e A novel method for post-processing estimated load model values is proposed. The
presented method is based on the estimation error weighted averaging of values.
See Chapter 2 for more information.

e The conversion error of load model conversion methods is analysed. No similar
studies have previously been conducted. Furthermore, the impact of conversion
error on load modelling error in load flow calculations is discussed. No similar dis-
cussion and explanation has been found in the literature. See Chapter 3 for more
information.

e In Chapter 3, a novel method for exponential to ZIP model conversion (method
AMB3) is proposed. In the same chapter, an improved conversion method (method
AM2) is proposed. Two different variations of method AM2 are presented, one for
converting exponential models to constrained? ZIP models and another for convert-
ing to unconstrained? ZIP models. The derivation of the analytical method used for
ZIP to exponential load model conversion is explained, as this derivation was not
found in the literature.

2The difference between a constrained and unconstrained ZIP model is explained in Section 1.2.3.
Briefly, the multipliers of ZIP model parameters of the constrained model are limited to the range
of 0...1. The unconstrained model does not have this value limitation. In some of the available
literature the unconstrained ZIP models are defined as accurate ZIP models, for example in [18,24].
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Practical Originality of the Work
e An approach is presented for clustering aggregated loads based on load class en-
ergy consumptions. This method can be used for grouping similar loads, determin-
ing representative loads and reducing the number of estimated load models. See
Chapter 2 for more information.

e The estimation of static load models of transmission system loads is discussed. Com-
monly load modelling is discussed in the context of distribution networks.

e The impact of event filtering on estimated load model values is analysed based on a
set of Digital Fault Recorder recorded events. See Chapter 2 for more information.
No similar analysis has been found in the literature by the author.

¢ The static load models of Estonian transmission system have never been previously
studied. Previous studies have instead focused on other aspects of load modelling
(peak load forecasting, weather dependency) or conducted at lower voltage.

e The topic of conversion error is introduced. Conversion error of previously known
and proposed conversion methods is analysed and compared. See Chapter 3 for
more information. No similar analysis has been found in the literature.

e The impact of conversion error on load flow results is analysed based on a case
study. The results of the case study indicate that significant modelling errors can be
caused by inaccuracy of converted load models. See Chapter 3 for more informa-
tion. No similar analysis has been found in the literature.

Dissemination of the Research Work

The research and development work for this dissertation was started in the context of
the research project "Static and dynamic characteristics of loads of Estonian electrical
transmission network", which was initiated by the Estonian TSO, Elering. The project
involved measurement-based and component-based load modelling. The results of the
research project were published as technical reports [25-27], and some findings were
presented at scientific conferences of IEEE and IET (publications: [I-V]). Four bachelor’s
theses [28-31] and four master’s theses [32-35] were defended on related topics. Some
data analysis methods used in the project were applied for ramping behaviour analysis
in [36] and [37]. The work on load model conversion methods continued after the end
of the project and led to a peer-reviewed journal paper [VI]. In addition, work continued
also on measurement-based load modelling and three additional conference papers [VII,
VIII], [38] were published.

Thesis Outline

This thesis encompasses four chapters.

Chapter 1 describes the load models used in this dissertation and gives an overview
of the fundamentals of load modelling. Due to the wide scope of load modelling, the
modelling of voltage dependence of loads is in focus.

Chapter 2 describes a procedure for estimating the static load models for aggregated
transmission system bus loads. Measurement data from the Estonian transmission system
is used to illustrate the process. The available measurement systems of the transmission
system are discussed from the load model estimation perspective. The grouping of loads
based on monthly load composition using K-means clustering is presented. Next, the sig-
nificant event detection and event filtering are discussed based on measured events. The
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impact of time of measurement is analysed based on a case study. The impact of dis-
tributed generation is also illustrated based on a case study. Finally, a method for post-
processing a set of estimated load models is presented and analysed.

Chapter 3 describes how static load models (exponential and ZIP model) can be con-
verted to other static load models (ZIP model or exponential, respectively). The arising
conversion error is discussed based on numerical analysis. Impact of conversion error on
load flow results is illustrated by using a case study of a small power system.

Chapter 4 summarises the conclusions of the thesis and proposes research directions
for future work.

14



Abbreviations

COMTRADE

CHP
CVR
DFR

DG

DSO
EMS
IPS/UPS

MAE
MSE
MATLAB
MV
NLS
NMAE
NMSE
NZEB
OLTC
p.u.
PMU
PQM
PSCAD
PSS®E
r.m.s.
SCADA
TSO
ZIP

COMmon format for TRAnsient Data Exchange for power
systems

Combined Heat and Power

Conservation Voltage Reduction

Digital Fault Recorder

Distributed Generation

Distribution System Operator

Energy Management System

Integrated Power System / Unified Power System of Rus-
sia

Mean Absolute Error

Mean Square Error

MATrix LABoratory

Medium Voltage

Non-linear Least Squares

Normalized Mean Absolute Error

Normalized Mean Square Error

Nearly Zero-Energy Building

On-Load Tap Changer

per unit

Phasor Measurement Unit

Power Quality Monitor

Power Systems Computer Aided Design

Power System Simulator for Engineering
root-mean-square

System Control and Data Acquisition

Transmission System Operator

Second order polynomial load model, see Section 1.2.3
for a description

Abbreviations of Institutions and Organisations

CIGRE

EPRI
IEEE
IET

Conseil International des Grands Réseaux Electriques - In-
ternational Council on Large Electric Systems

Electric Power Research Institute

Institute of Electrical and Electronics Engineers

The Institution of Engineering & Technology
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Symbols
il
14)
Iy
KExp
KExp,L

KExp,T

KExp,0

K1
Kpr

K71
Kir
Kpr

P

b

P
Py
Pour
P

B,

P
Pexp
Pzip
P meas
B model

Positive sequence component of current

Negative sequence component of current

Zero sequence component of current

Exponent of exponential load model (of active power)
Exponent of exponential load model (of active power).
Aggregated load excluding DG (all supplied load).
Exponent of exponential load model (of active power).
Aggregated load including DG (apparent load of the
transformer).

Exponent of exponential load model (of reactive power)
Multiplier in ZIP load model (of active power)

Multiplier in ZIP load model (of active power)

Multiplier in ZIP load model (of active power)

Multiplier in ZIP load model (of reactive power)
Multiplier in ZIP load model (of reactive power)
Multiplier in ZIP load model (of reactive power)
Multiplier in ZIP load model (of active power). Aggre-
gated load excluding DG (all supplied load).

Multiplier in ZIP load model (of active power). Aggre-
gated load excluding DG (all supplied load).

Multiplier in ZIP load model (of active power). Aggre-
gated load excluding DG (all supplied load).

Multiplier in ZIP load model (of active power). Aggre-
gated load including DG (apparent load of the trans-
former).

Multiplier in ZIP load model (of active power). Aggre-
gated load including DG (apparent load of the trans-
former).

Multiplier in ZIP load model (of active power). Aggre-
gated load including DG (apparent load of the trans-
former).

Active power

Base value for active power

Generated active power

Original load characteristic (input model) to be converted
Converted (calculated/fitted) load characteristic

Active power of aggregated loads

Nominal value of active power

Initial (pre-event) value of active power

Active power (according to exponential load model)
Active power (according to ZIP load model)

Active power based on measured values

Active power based on estimated load model
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Op

On
Qo
Okxp
Ozrp

SSE

Reactive power

Base value for reactive power

Generated reactive power

Nominal value of reactive power

Initial (pre-event) value of reactive power

Reactive power (according to exponential load model)
Reactive power (according to ZIP load model)
Silhouette Coefficient

Sum of Squared Euclidean distance

Positive sequence component of voltage

Negative sequence component of voltage

Zero sequence component of voltage

Voltage

Base value for voltage

Voltage sample with index i, i € {1,2...N} (i,N € N)
Nominal voltage

Initial (pre-event) voltage

Relative conversion error at voltage V;

Mean value

Weighted mean value, inverse of MAE used as weight
Weighted mean value, inverse of MSE used as weight
Standard deviation

Conversion error at voltage V;
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1 Load Modelling

1.1 Introduction

The power consumption of loads is stochastic in nature [39, 40] and varies in time [41-
44]. Additionally, the load depends on weather, social factors, and the operational state
of the power system. The impact of weather has been analysed in the literature with
respect to temperature [39,45-49], wind speed [45, 48], hours of sunshine [50] and solar
analemma variables (elevation angle and azimuth angle of the sun) [51]. The impact of
social events is analysed in [49]. The load sensitivity to system parameters is commonly
analysed with respect to voltage and frequency. Possibly one of the earliest studies on
voltage and frequency sensitivity of aggregated load is [52]. Similarly to the load itself,
the voltage dependence of the load varies in time [4-9,53-56] due to the changes in load
composition. Typically, only some properties of the loads are modelled in power system
models. A suitable mathematical model is chosen based on the conducted study and the
nature of the modelled load.

System parameter dependent load models can be classified into three groups based on
the time-dependence: static (time-independent), dynamic (time-dependent), and com-
posite (model includes static and dynamic components). The use of static load models is
justified when the load responds to system parameter changes fast and the steady state is
reached very quickly [18,57]. They are most often used in power flow calculations [18] and
voltage stability studies [18,58]. The dynamic load models are often required for inter-area
oscillation [57], voltage stability [57,59] and long-term stability [57] studies. The most sig-
nificant load dynamics are the dynamics of motor loads due to the high amount of power
consumed by motors. In addition, the behaviour of discharge lamps, protection relays,
thermostatically controlled loads, OLTCs of distribution transformers, voltage-controlled
capacitor banks and other dynamic aspects of load components need to be considered in
stability studies [57].

The industry practice of load model usage was investigated by CIGRE working group
C4.605, which conducted a large-scale survey among utilities and system operators. The
results of the survey are presented in [18] and [60]. Some results of the survey are shown
in Table 1.1. According to [60] (and Table 1.1), 84% of responders used a constant power
model for steady state studies. In the case of dynamic simulations, there was no dominant
model. Still, the static load models (constant power, current, impedance; exponential and
ZIP) were used by over 70% of responders for load modelling in dynamic simulations. Thus,
static load models are commonly used in the industry for power system analysis.

This thesis focuses on the static load models, which are used to describe the voltage
dependence of the aggregated loads of system buses. An aggregated load of the trans-
mission system is considered to include the total power demand of loads connected to
the bus, loads of the downstream networks, and losses of the downstream networks.

1.2 Static Load Models

The static load models describe the load characteristics as functions of voltage (and fre-
quency) 3. The equations used are algebraic equations [57,68]. An example of a static load
characteristic is shown in Figure 1.1 4. Three basic voltage characteristics of load (load be-
having as constant power, current, and impedance) are explained in Section 1.2.1.

3In this thesis the focus is on voltage characteristics and for this reason the frequency character-
istics of the loads are neglected.

4The voltage characteristic shown in Figure 1.1 corresponds to a constant impedance character-
istic explained in Section 1.2.1.
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Table 1.1: Industry practice of load model usage [60]

Load Model Static Studies Dynamic Studies
Active Reactive
power power
Constant power 84% 23% 23%
Constant current 3% 19% 0%
Static Constant impedance 3% 4% 22%
ZIP model 8% 19% 19%
Exponential model 2% 7% 9%
¢ . ZIP model with induction - 16% 17%
omposite motor
Detailed composite model - 10% 10%
1.6
1.4 ¢
1.2 1
— 1r
3
2
5 08f
3
206
04
02f
0

0 0.2 0.4 0.6 0.8 1 1.2
Voltage (p.u.)

Figure 1.1: A static load characteristic.

The following sections describe three load models for modelling load characteristics:
an exponential model in Section 1.2.2, a ZIP model (second order polynomial model) in
Section 1.2.3 and a polynomial model in Section 1.2.4. In addition, the respective PSCAD,
PSS®E and DIgSILENT PowerFactory implementations of the models are discussed.

In Chapter 2 and Chapter 3, the equations are only given for active load, as the mathe-
matical model of active and reactive load is similar. This can be observed when comparing
the active and reactive load equations in Section 1.2.2, Section 1.2.3, and Section 1.2.4.
Furthermore, the second order polynomial (i.e. ZIP) and exponential load model can be
defined using the nominal value of voltage and power [69,70] or initial values [70,71]. In
this thesis the load models are generalised by using base voltage V,,, base active power P,
and base reactive power Qj,. In the following chapter, Chapter 2, the initial values are used
as base values when estimating load models from measurement data. Following this, in
Chapter 3, the base values are used for defining load model conversion methods, and the
usage of nominal and initial values as base values is discussed.
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1.2.1 Constant Power, Current and Impedance Characteristic of Load

The loads with constant power characteristic do not have a voltage dependence and are
modelled by a constant power value. The loads with constant current characteristic con-
sume power proportionally to voltage. This characteristic can be represented by a simple
algebraic equation in the style> P = P, - (V/V},), where P is load at voltage V, when at
base voltage V,, the load is P,. Loads with constant impedance characteristic consume
power proportionally to the square of voltage, and can be mathematically described by
algebraic equation® P = B, - (V /V},)?, where P is load at voltage V, when at base voltage
V), the load is P,. The voltage characteristics of loads with constant power, current and
impedance behaviour are shown in Figure 1.2, where the voltage independence of con-
stant power load, linear dependence of constant current load and square dependence of
constant impedance load can clearly be noted.

1.6
1.4} |— — Constant power

— - — - Constant current
12} Constant impedance

0 0.2 0.4 0.6 0.8 1 1.2
Voltage (p.u.)

Figure 1.2: Voltage characteristic of constant power, constant current and constant impedance
model.

These three load characteristics can be modelled by an exponential load model (de-
scribed in Section 1.2.2). To use the exponential load model in this way, the exponent
KExp (and/or Ky o) is assigned values 0, 1and 2, respectively. The second order polyno-
mial (ZIP) load model (described in Section 1.2.3) and polynomial load model (described
in Section 1.2.4) can be used for modelling combinations of loads with the three described
characteristics (constant power, current and impedance). In the case of a polynomial load
model, the exponents of the equations are given values 2, 1 and 0. The contributions of
the load components with different characteristics are described by the multipliers.

1.2.2 Exponential Load Model

The exponential load model can be described by an exponential equation (1.1), reactive
load is represented by a similar equation (1.2).

V KExp
Pexp=P,- (Vb) (1.1)

5In the equations the frequency dependence of the loads has been neglected.

21



Kgp.0
Oexp=0p- <“//b> (1.2)

where P, and Oy, are active and reactive load, respectively, at base voltage V,,. K¢y, and
KExp, o are exponential parameters describing the voltage dependence of the active and
reactive load, respectively.

PSCAD load models Fixed Load L-L and Fixed Load L-G

The exponential load model is available in PSCAD software as two different simulation
models: Fixed Load L-L and Fixed Load L-G. The main difference between the two models
lies in the connection of the load. The L-L version can be used for modelling A-connected
and L-G for modelling Y-connected loads. When these models operate at voltages within
range V /V,, € {0.8...1.2}, where V,, is nominal bus voltage, the PSCAD load models Fixed
Load L-L and Fixed Load L-G have exponential voltage characteristics® (1.1) and (1.2). In
PSCAD, nominal voltage V), is used as the base voltage Vj,. Kg,, is denoted in PSCAD by
K,y and Ky, o is denoted by K. Athigher (V /V,, > 1.2) and lower voltages (V /V,, < 0.8),
these PSCAD models switch to constant admittance load [72]. The constant admittance
load behaves as a constant impedance load described in Section 1.2.1. According to [72],
the allowed Kg., and Kg o values are: —5.0 < Kgy, <5.0and —5.0 < Kgyp 0 <5.0.

1.2.3 Second Order Polynomial (ZIP) Load Model

The second order polynomial load model is described by (1.3) subject to (1.4). Reactive
load is represented by similar equations (1.5) and (1.6). The quadratic component of the
polynomial equation (P, - K7 - (V/V;,)2 and Q- Kz - (V/Vb)z) behaves as a load with
constant impedance (Z) characteristic, the linear component (P, - K; - (V/V,) and Q-
Ki - (V/V,)) as load with constant current (I) characteristic, and the third component
(Py - Kp and Qp, - Kp) as a load with constant power (P, Q) characteristic. For this reason,
this model is also called a ZIP model.

2
\% \%4
Pip="P,- |Kz-| — +Ki-| - | +Kp (13)
Vi Vi
Kz+Ki+Kp=1 (1.4)
2
%4 %
Qzir=0Qp- |Kzo-| ) TKio-| 7| T Ko (1.5)
Vi Vi
KZ,Q + KIVQ + KQ =1 (1.6)

where P, and Q) are active and reactive load, respectively, at base voltage V,,. Kz, K;, Kp
and K7 o,K;j 0,Kp are parameters describing the voltage dependence of the active and
reactive load, respectively.

61n addition to the voltage characteristics, the PSCAD models Fixed Load L-L and L-G also include
frequency characteristics, which have been neglected in equations (1.1) and (1.2). For modelling the
frequency dependence, a linear model is used in PSCAD.
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The values of ZIP model parameters (Kz, K;, Kp, Kz 0, K10 and Kp) are sometimes
limited to range 0...1. In such a case the ZIP model is called a "constrained ZIP model",
and without the constraints the model is considered to be an "accurate ZIP model" [18,
24]. As the term "accurate load model" is used in Chapter 3 of this thesis with another
meaning, the terms constrained and unconstrained ZIP load model are used for classifying
ZIP models in respect to parameter constraints.

PSS®E load model similar to ZIP model

The ZIP load model is included in PSS®E as the main load model. Near nominal voltage,
the PSS®E model corresponds to the generic ZIP model described earlier and can be de-
scribed by (1.7) and (1.8). Similarly to the generic ZIP model (described by (1.3) and (1.5)),
the PSS®E model has three distinctive components: Y Pload and Y Qload with constant
impedance (corresponding to P, - Kz and Qy, - Kz o); IPload and IQload with constant
current (corresponding to P, - K; and Qy, - Ki ¢); Pload and Qload with constant power
(corresponding to P, - Kp and Oy, - Kp).

V2 1%

P=YPload-| — | +1Pload | — |+ Pload (1.7)
Vi Vi
V2 1%

Q0 =YOQload - () +1Qload - () + Qload (1.8)
) Vi

where Y Pload, IPload, Pload are active load components with different voltage depen-
dence in MW, Y Qload, IQload, Qload are reactive load components in Mvar, and V}, cor-
responds to the nominal voltage of the load bus.

The constant current and constant power components (IPload, IQload, Pload,
Qload) are modelled by elliptical voltage-current (V-1) characteristics at lower volt-
ages [73]. The constant current characteristics (IPload, 1Qload) are replaced by
elliptical V-1 characteristics at load bus voltages below 0.5 p.u. [73]. The constant
power components (Pload, Qload) are replaced by elliptical V-I characteristics when
the load bus voltage is below the PSS®E solution parameter PQBRAK (default value 0.7
p.u.) [73]. The parameter PQBRAK can be assigned a value in solution settings in range
POBRAK € (0,2] [73].

1.2.4 Polynomial Load Model

In Chapter 3 of this thesis, a less common polynomial load model is used. It is defined
by (1.9) and (1.10), and is included in DIgSILENT PowerFactory as load model General Load
[74]. The polynomial load model resembles the ZIP load model. The main difference is
the ability to configure the exponents of the polynomial components (eqp, eyp, ecp, €ag,

ebQ,eCQ).
M \% 4 \% €pp \% €cp
Py =P, - = bp- | — N -
oL=or (V> o (V) e (V> } (19)
ap+bp+cp=1
r V eaQ V ebQ V eCQ
oo o () (1) ()
t ? L ¢ Vo ¢ Vo ¢ Vo (1.10)

aQ—‘er-l—CQ: 1
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where P, and Q, are active and reactive power of the load at voltage V,; ap, bp, cp, ag,
b and ¢ are coefficients of the polynomial equation; e.p, epp, ecp, €ap, epg and e.g are
exponents of the polynomial equation. Subscript o stands for Operating Point in DIgSILENT
PowerFactory, which can be interpreted as the nominal operating point. Thus, V,,, P, and
0, can be replaced in the equation by nominal values V,,, P, and Q,,.

The polynomial load model can accurately describe the ZIP model (Section 1.2.3) and
the exponential model (Section 1.2.2). This property of the model is used in Chapter 3,
where load model General Load is used in DIgSILENT Power Factory for modelling expo-
nential and ZIP load models.

To use this model as a ZIP model, exponents e,p, e,p and e.p (and/or exponents e,
epp and e.g) are assigned the values 0, 1 and 2. This way the polynomial equation (1.9)
(or (1.10)) becomes a second order polynomial equation, similar to the ZIP model (1.3) (or
(1.5)). When this model is used as an exponential load model, the values of two coeffi-
cients (among ap, bp and cp; or among ag, by and c¢ for reactive load) are set to 0, and
the value of the third is set to 1. The exponent corresponding to the coefficient with value
1 is used as the exponent of the exponential model.

1.3 Methods for Load Model Estimation

In power system models the loads are typically represented by aggregated bus load mod-
els. The mathematical equation of the model is chosen based on the modelled aspect of
the system, the nature of the aggregated load, and the properties of the load that affect
the analysed aspect of the system. The used load model parameter values are identi-
fied based on literature, experience, measurements, survey results, or have an unknown
source [18, 60]. There are three main approaches for load model derivation: component-
based (described in Section 1.3.1), measurement-based (described in Section 1.3.2), and
combined (described in Section 1.3.3). The third approach is a combination of the first
two approaches.

1.3.1 Component-based Load Modelling
The component-based load model estimation method is a bottom-up approach. Load
components comprising the loads are identified. For each component, a load model is
determined. A model of the aggregated load is constructed based on the models of the
components, taking into account the load power consumptions of the load components.
The approach isillustrated by Figure 1.3 and applied in publications [7,53,61]. Each load
component (often a type of device) has a load characteristic, which is modelled (approxi-
mated) by a load model or combination of several models. Some models of load devices
can be found in publications [7, 23, 53, 61-67]. Often, load classes are defined based on
customer classification and a load model is constructed for each load class. Finally, based
on load class contributions, the aggregated bus load model is constructed by combining
the load class models.

1.3.2 Measurement-based Load Modelling
The measurement-based load model estimation method is a top-down approach. Mea-
surement data and data processing techniques are used for load model determination. A
comprehensive overview of this approach has been given by EPRI [75,76] and CIGRE [18].
Both normally occurring [77,78] and intentionally induced [6,79] disturbances and events
may be used for load model estimation [18].
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Public —|Small motor model |
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Figure 1.3: Component-based load modelling approach.

Choosing a suitable methodology for measurement data processing depends on the
type of estimated load model and properties of the measured data. Typically, the data
processing starts from measurement data acquisition. Data acquisition for implementing
a measurement-based approach can be performed using Power Quality Monitors (PQM)
[18,76], Digital Fault Recorders (DFR) [18,58,76], Phasor Measurement Units (PMU) [18,56,
76,78,80-83], protection relays with data logging capability [18], EMS/SCADA [18,84], etc.
This is followed by data pre-processing, which may include event detection, data filtering,
data extraction, and signal smoothing. After the measurement data have been prepared,
parameter values for a chosen load model are estimated by using analytical methods, op-
timisation (minimising error or maximising fitness function) or a stochastic approach. Op-
timisation through curve-fitting is the most popular among these approaches [76]. Next,
the estimated model is validated by comparing the disturbance response of the simulated
and measured load. In some cases, several models are fitted to the measured data and
the most fitting model is chosen. In some other algorithms, only estimation error is cal-
culated. The typical process of measurement-based load modelling is shown in Figure
1.4.

1.3.3 Combined Load Modelling

The combined approach of measurement- and component-based load modelling is briefly
described in [18]. Firstly, the loads are clustered based on the load composition of the
maximum summer and winter load. The loads closest to the cluster centres are chosen
from each cluster as typical load. Secondly, the data monitors are placed at these buses
and the measurement-based load modelling is used for estimating the models of the type
loads. Model validation by comparing simulated and measured response of the single
load and system is necessary.
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Figure 1.4: Process of measurement-based load modelling.
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2 Estimation of Static Load Models of Aggregated Transmis-
sion System Loads

2.1 Introduction

This chapter of the thesis was motivated by the interest of a Transmission System Operator
(TSO), which arose around the time of publication of [18]. For many years, the Estonian
TSO had used the same load models for modelling the aggregated bus loads. This sit-
uation was similar to many other TSOs according to [60]. The objective of the research
presented in this chapter is to construct a load model estimation methodology that would
make use of the existing measurement systems and databases. It analyses which of the
existing measurement systems (Digital Fault Recorders (DFRs), Power Quality Monitors
(PQMs) and Phasor Measurement Units (PMUs)) could be utilised for updating the mod-
els. In order to simplify the task, the focus of the work is on the estimation of static load
models (ZIP and exponential model) of 110 kV aggregated bus loads. The static models of
aggregated loads of Estonian power system have previously been researched in [85, 86],
where the focus is on end consumers and distribution network loads. In this thesis, mod-
els of aggregated 110 kV bus loads of transmission system are analysed. In addition to
the work presented in this chapter, the author also estimated the load models by using a
component-based approach. That work is discussed in technical reports [25-27].

In Section 1.3, three load modelling approaches were presented. The measurement-
based modelling approach (Section 1.3.2) was implemented for estimating exponential
and ZIP models. The structure of this chapter follows the measurement-based load mod-
elling procedure shown in Figure 2.1. Firstly, in Section 2.2, requirements for the mea-
surement data are presented (Section 2.2.1), the available measurement systems are de-
scribed (Section 2.2.2), and the selection of measurement locations with higher priority
is discussed (Section 2.2.3). Next, the data pre-processing methods used are described
(Section 2.3), including the DFR data preparation (2.3.1), voltage event detection method
(Section 2.3.2), and unsuitable event identification (Section 2.3.3). After the measure-
ment data acquisition and data preparation methods, the load model estimation method
used is presented in Section 2.4.1. The estimation result is affected by the measurement
time and distributed generation, which are discussed in Section 2.4.3 and Section 2.4.4,
respectively. To quantify the goodness-of-fit of estimated models, some commonly used
measures of error are shown in Section 2.5.1. An idea for post-processing estimated load
models is presented in Section 2.5.2. The presented method makes use of load model
estimation error when the representative load model values are calculated.

The main results of this chapter have been published in [11I-V, VII, VIII]The procedure for
grouping aggregated loads based on monthly load class compositions is first introduced in
[V]. The impact of event filtering on load model estimation is analysed in [VII]. The intra-
day variations of load models are analysed in [lll]. In [IV, VIII] the impact of distributed
generation on estimated exponential load models is analysed based on a case study. The
idea for the post-processing method is first presented in [lIl].

2.2 Acquiring Measurement Data

Different measurement systems are used in the power system for gathering measurement
data. Some systems used in the Estonian transmission system are discussed in Section
2.2.2 together with other measurement solutions that were used for conducting the case
studies. Depending on the devices used, the technical capabilities of the systems vary, and
the properties of the measured data differ. In Section 2.2.1 requirements for measurement

27



Acquring
measurement data

'

Pre-processing Voltage event detection

measurement data

'

Model estimation Curve fitting

Filtering of detected events

¢ Estimation error calculation and
evaluation of goodness-of-fit

Post-processing
estimated models

Representative load model value
calculated

Figure 2.1: Process of load model estimation.

data for load model estimation are described based on the literature. Event filtering based
on some of these requirements is discussed in Section 2.3.3, and the impact of these
aspects is illustrated in Section 2.4.2

2.2.1 Requirements for Measurement Data

According to [18], suitable events and disturbances for load model determination should
have the following characteristics:

1. three-phase event/disturbance with voltage and current unbalance below 10%;
takes place either upstream or on an adjacent feeder;
sufficient drop in voltage (10% or more);

is not a voltage interruption;

AN B

duration of the event is at least 4 cycles.

Contradicting condition 3, [77] and [87] claim that loads can be modelled using voltage
changes of 0.5%. In publication [lll], a 0.5% voltage disturbance threshold was used as
it was permissible to induce only small voltage disturbances for the case study. In publi-
cations [IV, VIII] an on-load tap changer with 1.78% steps was used for inducing voltage
changes, and slightly larger disturbances were possible than induced for [llI] (compared
to condition 3, the disturbances were still far below 10%). Thus, in the case studies per-
formed for this thesis, small voltage changes compared to recommendations of [18] are
used. As nearly symmetrical voltage disturbances are less frequent than unbalanced ones,
load model estimation from unbalanced events is proposed in [88].
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Furthermore, in [18] it is recommended that the recorded data should include at least
several cycles of pre-disturbance data and several seconds of post-disturbance data. The
sampling rate of the measurement device should be above 100 Hz for estimating param-
eters of static load models with a high level of confidence [18, 89].

Considering that the voltage sensitivity of the aggregated load is time-dependent [4-9]
it is also important for the measurement times to cover different periods of the day. This
aspect is illustrated by the case study results in Section 2.4.3.

2.2.2 Measurement Systems

In the literature different measurement systems have been used for estimating exponen-
tial and ZIP load models. Some examples are given in Table 2.1. Measurement data from
the Estonian transmission system were used for testing the implemented approaches.
The Estonian transmission system operator (TSO) uses three types of measurement de-
vices that are capable of offering a relatively high measurement frequency: Digital Fault
Recorders (DFR), Power Quality Monitors (PQM), and Phasor Measurement Units (PMU).

Table 2.1: Measurement systems used for load modelling in literature.

Reference Load Model Used Measurement System
[42] Exponential, ZIP Load monitoring device (0.2...1 Hz
sampling rate)

[9] Exponential, ZIP 1Hz sampling rate

[8,84] zIP SCADA
[58] Exponential DFR
[90] Dynamic DFR

[56,83] ZIP PMU

[81,91] Dynamic PMU

[92] ZIP, dynamic, composite PMU

The data recording of DFRs is event based. The measurement events are detected
using a set of triggering conditions, which include the rate of current change, an overvolt-
age limit, an undervoltage limit and the rate of voltage change. The digital fault recorders
used by the TSO are typically configured to record 50 ms pre-disturbance (pre-triggering)
and 5 seconds post-triggering. Technically, the newer models of the DFR are capable of
recording up to 250 ms pre-triggering and 15 seconds post-triggering. From a static load
model estimation perspective, this period of time is rather short. 1 kHz sampling rate is
used for recording instantaneous values of voltage and current. Sliding window algorithm
using discrete Fourier transform can be used for obtaining phasor domain quantities [18]
and obtaining power values. The main benefits of a DFR system in the case of the Esto-
nian power system are as follows: large number of installed devices, years of historical
database available and good placement of the devices from load model estimation per-
spective.

At the time of the measurement systems analysis there were some technical issues
with the TSO’s power quality measurement systems. This meant that some PQM were
not available for use. Moreover, the placement of the existing PQM devices was ill-suited
to measuring the aggregated 110 kV bus loads. For conducting the case studies of the
dissertation, PQM devices of Tallinn University of Technology were used for taking the
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measurements of case studies presented in [lll, IV, VIII]. Data with a 200 ms time step
were used on several occasions, because data with a higher measurement frequency were
recorded as short events and there were gaps between the short recordings. This mea-
surement rate (5 Hz) is below the recommended 100 Hz sampling rate of [18], but still
provided insightful measurement results.

Similarly to the PQM devices, the placement of the PMUs was found to be unsuitable
for estimating the targeted 110 kV bus load models. The devices had been placed with
the aim of observing the 330 kV transmission lines, and for this reason were not able to
measure the 110 kV bus loads.

2.2.3 Choosing Measurement Locations

The DFR measurements are not available in all the 110 kV substations. In addition, in some
substations not all the feeders or transformers are measured. Thus, for those substations,
it is not possible to calculate the aggregated load using power balance, and to measure
it by this type of device. To model the aggregated loads that are not measured, the load
models of similar loads can be applied. In order to take measurements during case stud-
ies’, PQMs were temporarily placed at chosen locations, voltage disturbances were in-
duced and system responses were recorded. The measurement locations of the PQMs
were determined based on analysis of load composition and practical considerations. As
a result of the analysis conducted, aggregated loads were classified, and representative
loads were chosen for each load group.

Identifying substations with similar load class composition

The distribution network operator provided 33 months (from January 2013 to September
2015) of monthly energy consumption data measured by the metering system. The ac-
quired raw data of 1 substation are plotted in Figure 2.2 as an example. The same data
are used for illustrating the used normalisation method in Figure 2.3. The monthly en-
ergy consumptions were given for the aggregated transmission system loads by load class
accuracy. The demand was given for 5 load classes:

e Class 1: Residential
e Class 2: Agricultural
e Class 3: Commercial
e Class 4: Industrial

e Class 5: Public

These metering data were first processed to obtain a representative annual load class
composition for each included aggregated load. The monthly values were averaged for
each month of the year and normalised. This way each substation load (object) was de-
scribed by 12 -5 = 60 attributes (12 months, each with values for 5 load classes). An ex-
ample of a result is plotted in Figure 2.3. The data of the same substation is shown, as was
plotted in Figure 2.2.

The grouping of daily load profiles has a similarity to the clustering of aggregated loads
by monthly energy consumptions. The daily load profiles have been clustered for cus-
tomer classification and type profile identification using K-means clustering (Lloyds’ algo-
rithm) [93] in [44, 94]. In [95,96] a more advanced approach of dynamic time warping is

7Case studies were presented in [lIl, IV, VIII]. Measurement data gathered during the case studies
was used for plotting the illustrating figures of this chapter.
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Figure 2.2: Monthly energy consumption of a substation, disaggregated by load classes. Adapted
from [V]
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Figure 2.3: Monthly load class compositions of a representative year after normalisation (values
stacked). Adapted from [V]

used. Dynamic time warping is similar to the Lloyds’ algorithm, and additionally match-
ing of time shifted series is possible. The K-means clustering was used for conducting the
grouping of loads.

The K-means algorithm classifies objects into K clusters based on the attributes of the
objects. The objective of the algorithm (2.1) is to minimise the total squared Euclidean
distance between the objects and centres of the assigned clusters. A detailed explanation
of the steps of the algorithm is provided in [94].

K
min [ Y'Y d(x,z) (2.1)

i=1x€C;

where K is the number of clusters, z; is the centre of cluster C;, and d(x, z;) is the squared
Euclidean distance between object x and cluster centre z;.
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The squared Euclidean distance d(x,z;) between object x with attributes x;,x,...x,
and cluster centre z; with attributes z1 1,212, ...21,, is (2.2).

d(x,z1) = (x1 —z1.1)* + (22 —212)* + o 4 (X0 — 210)° (2.2)

The optimal number of clusters (K) was determined by using a combination of several
methods. Firstly, the largest analysed number of clusters was calculated using equation
2 < Kpax < 4/m, where m is the number of objects. This equation has previously been
used in [94]. Secondly, K-means clustering was conducted for K = 2...K,,,,. The sum of
squared Euclidean distance (SSE) and Silhouette Global Index (SGI) [97] were calculated
for the solutions and analysed with respect to K.

In the case of Sum of Squared Euclidean distance (SSE) a lower value is better, as a
lower value means that the objects are closer to the cluster centres (clusters are more
compact). The SSE decreases as the number of clusters increases. This is illustrated by
Figure 2.4. The point on the SSE plot which resembles an elbow is usually where we start
to see a diminishing return of increasing K [98]. The first value of K where SSE starts to
diminish is chosen [99]. As the curve is rather smooth, based on this logic, the reasonable
value of K could be in range 10...15.

5
5 X10° : : : : : :

0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Number of Clusters

Sum of Squared Euclidean Distances

Figure 2.4: Sum of squared Euclidean distance for different number of clusters. Adapted from [V]

One of the most commonly used [94] internal tests for evaluating the results of K-
means clustering is the Silhouette Global Index (SGI) [97]. The SGI is based on silhouette
values s; (2.3) of objects i. The silhouette values of the objects are averaged for calcu-
lating the local silhouette coefficient S; (2.4), which are used for calculating the value of
silhouette coefficient SC (2.5).

(bi —a;)

i = m (2.3)

where b; is the minimum mean distance from object i to objects belonging to other clus-

ters, minimised over clusters; a; is the mean distance between object i and the other
objects of the same cluster j.

Sj = — ZS,' (2.4)
where n; is the number of objects in cluster j.
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1 f
sc=-Y's, (2.5)
KiS

The following interpretation of silhouette coefficient SC values is proposed in [100]:
e < 0.25: No substantial structure has been found.

e 0.26...0.50: The structure is weak and could be artificial.

e 0.51...0.70: A reasonable structure has been found.

e 0.71...1.00: A strong structure has been found.

SC values of analysed data are shown in Figure 2.5. From the figure it is clear that a
strong structure was not found (all SC values are below 0.71). A reasonable structure (SC
value 0.51...0.70) was found for several values of SC. The largest value of SC occurred at
K =2, which also has the largest value of SSE, and for that reason would not be a good
choice. Choosing value 10 would lead to silhouette values s; shown in Figure 2.6. From
this figure it is clear that the number of objects belonging to a cluster varies, cluster 3
includes only a single load.
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0.50

0‘45 1 1 1 1 1 1 1
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Figure 2.5: Silhouette coefficient for different number of clusters. Adapted from [V]

Selecting representative loads

When choosing representative loads and measurement locations for the case studies,
several aspects were considered: placement of existing measurement devices, distance
from system buses with voltage control (buses with shunt reactors or on-load tap changer
(OLTC)), condition of substation, and load of the substation.

Substations with DFR were analysed based on an Excel file (provided by the TSO) that
included information about measured feeders and transformers. This was compared to
the network topology (in normal operation), and observable loads were identified. The
analysis of PMU and PQM locations indicated that at the time of the analysis, their place-
ment was not suitable for load analysis. This approach led to the identification of loads
that can be analysed based on historical data of DFR system.
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Figure 2.6: Silhouette value of clustering results (92 largest loads). Adapted from [V]

As there were a few mobile PQM devices available, in addition to analysis of DFR data,
a few case studies were conducted to acquire data of induced disturbances. Firstly, the
substations with the largest power consumption were analysed. The larger loads were
assumed to have less stochastic loads, as a set of a larger number of load devices was
assumed to behave closer to the statistical mean. Substations located far away were ex-
cluded based on practical considerations. A few substations were chosen from the same
cluster and some from other clusters to verify the clustering results. Taking measure-
ments in some chosen substations was not possible due to the condition of these substa-
tions. These substations were planned to be renewed in the upcoming years and were
condition-wise at the end of their life. This meant that connecting measurement devices
at the substation would have involved a significantly higher risk: due to the potentially
corroded connections, some wires could have come loose and caused a disturbance.

2.3 Pre-processing Measurement Data

Measurement systems can use different databases and file formats for storing the data.
For processing the gathered data, several different approaches had to be used and data
import interfaces had to be programmed. In the case of DFR data, measurement data
of each triggered event are stored in a separate file (in proprietary format). The use of
proprietary format and recording of instantaneous values posed the need for several data
preparation steps discussed in Section 2.3.1. In the case of the continuous measurements
of PQM, the voltage events had to be detected first. A simple method implemented for
this purpose is presented in Section 2.3.2.
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2.3.1 DFR Data Preparation

A set of MATLAB scripts was developed for handling the DFR measurement data files. The
software of the DFR manufacturer included a command-prompt-based API for converting
the proprietary format files to COMTRADE (COMmon format for TRAnsient Data Exchange
for power systems). This was combined in MATLAB with file search codes to convert the
historical data into easily readable COMTRADE format and to enable automatic processing
of the data. However, the converted files only included part of the information included
in the proprietary file format. For this reason, scripts were developed for reading and
processing the header section of the partially readable proprietary files. This way it was
possible to identify the device ID, event date, and substation name. These properties of
the event were used for renaming the event files with unique names. Measured instan-
taneous voltage and current values were acquired from the COMTRADE files. The r.m.s.
(root-mean-square) values of current, voltage, and power were calculated. To enable the
analysis presented in Section 2.3.2 and Section 2.4.2 the positive, negative and zero se-
guence components of the voltage and current were calculated.

2.3.2 Detection of Significant Voltage Events

The voltage disturbances can be detected in the measurement data based on the relative
voltage difference AV (2.6) of two sliding windows. The calculated values of AV are com-
pared to the event threshold; if it is exceeded, the event is flagged. This method has been
used for voltage event detection in [77,101].

Z"Vold B Z"Vnew

AV = W -100% (2.6)

n

where XV,,;; and XV,,,,, are the sum of n old and n new samples, respectively, and n is the
length of the averaging window.

In [77] and [87] it is claimed that small voltage changes of 0.5% can be used for load
modelling. In [77,79,87] voltage changes 0.5%...2% have been used. For this reason, 0.5%
was chosen as the event threshold in the case study presented in Section 2.4.3. In the
study presented in Section 2.4.4 the events were detected based on threshold AV > 1.5%
as OLTC with 1.78% step was used for inducing voltage changes. This meant the smallest
induced changes were over 1.5%, and were correctly detected by this threshold setting.

In [101] a window length of 20 seconds was used. Depending on the measurement data
used, the author of this thesis used n value corresponding to 10 or 40 seconds, which is
close to the previously mentioned 20 seconds.

2.3.3 Identification of Unsuitable Events

In Section 2.2.1 several requirements for suitable events were listed. In the case of the
DFR data, naturally occurring voltage disturbances are recorded. This means that the
recorded events include responses to different disturbances and only a small proportion
of the recorded events fulfil all the listed requirements. To illustrate the properties of DFR
recorded events, the value distributions of one substation are plotted.

Firstly, in [102] current and voltage unbalance below 10% is suggested as one condition
for a suitable event. To analyse the unbalance, the maximum value of negative and zero
sequence unbalance ratio is calculated for each DFR recorded event. According to the
definition of [103] the negative sequence unbalance ratio of voltage u; (2.7) is the ratio
between negative sequence component U, and the positive sequence component U;. The
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zero sequence unbalance ratio of voltage i (2.8) is the ratio of zero sequence component
Uy, and the positive sequence component U;. The current unbalance ratios are calculated
similarly by (2.9) and (2.10).

U

Uy = 7? -100% 2.7)
Uy

— 2% . 100% 2.8

uo Ul ) (2.8)

i = L 00% (2.9)
I

io = jﬁ -100% (2.10)
1

The symmetrical components of the voltages and currents that are used in (2.7), (2.8),
(2.9) and (2.10) can be calculated from the voltage and current phasors (U,, Uy, U, 1, I,,
I.) using (2.11) and (2.12), respectively.

U, 1 a d*] U,
UB|=1|1 a* allU (2.11)
U| |1 1 1]|U
Ll 1 a &1,
Li=11 & alll (2.12)

bl |t 1 1][L

Where a = 1/120°

According to Figure 2.7 the negative sequence ratio of voltage tends to have slightly
higher values than zero sequence ratio. Still, in general both of these stay below 5%.
Thus, the values of voltage unbalance ratios are mostly below 10%, which was proposed
in the literature as the limit value. The current unbalance ratios display significantly higher
values. A large number of events have unbalance ratio values over 100%. Thus, limiting
the current unbalance to 10% would exclude a large number of recorded events. The
number of remaining events is shown in Table 2.2.

Table 2.2: Number of events with unbalance ratio below threshold value (in total 1843 events
recorded at the substation).

Unbalance Ratio <1% <5% <10% <20%
Negative sequence ratio of voltage 1224 1678 1778 1798
Zero sequence ratio of voltage 1685 1800 1803 1807

Negative sequence ratio of current 9 385 415 441
Zero sequence ratio of current 14 561 579 604
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Figure 2.7: Voltage and current unbalance ratios of DFR recorded events of one substation. Maxi-
mum value of each event is plotted. Values above the maximum value of tick are included in the last
bar.

In Section 2.2.1 the second requirement for suitable event is for the location of the
event (upstream or on an adjacent feeder in respect to the measured load). To exclude
load change induced voltage changes, [77] uses the direction of voltage and power change.
When the active power of the load changes due to a voltage change, the direction of the
changes should match. [77] presents this condition as sign(AV) - sign(AP) > 0. The same
approach can be implemented in several ways. Calculation AV - AP > 0 could be used to
remove the sign functions, and acquire an identical result. In addition, the opposing di-
rection of voltage and load change would lead to an estimation of negative value of active
power exponent Kg.,. According to the survey results [60], the minimum values used of
active power parameter Kg,, are 0. Furthermore, in [61] only a few loads displayed a K¢,
value of -0.01. Thus, estimation of true negative values of Kg,;, should be unlikely, and the
detection of negative Kg,, value could be used for achieving similar results to equation
AV - AP > 0 and sign(AV) - sign(AP) > 0.

In Section 2.2.1 the third requirement is for the voltage change (10% or more proposed
in [102]). Significantly smaller changes of 0.5% are proposed in [77] and [87]. The differ-
ence between the maximum and minimum value of measured voltage was calculated to
quantify the DFR recorded events. Based on Figure 2.8 most of the events have voltage
differences below 0.05 p.u. and some are interruptions (voltage differences above 1p.u.).
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Figure 2.8: Difference between minimum and maximum value of voltage during the event.

Table 2.3: Number of events with maximum voltage difference below threshold value (in total 1843
events recorded at the substation).

<0.5% <1% <2% <3% <5% <10% <20%

Voltage difference 26 146 592 1422 1576 1684 1783
below threshold

A suitable event should not be an interruption. An interruption is defined in [104] by
an r.m.s. voltage drop below 5%, [103] mentions a threshold of 5% or 10%. In the context
of load modelling, a significantly higher threshold should be used. This is because at volt-
ages below 85% load devices start self-disconnecting from the grid [18]. For this reason,
residual voltages of events below 80% were detected and the corresponding events were
flagged as unsuitable. According to Figure 2.9 most of the recorded events have minimum
values of voltage above 0.8 p.u., and only a limited number of events have lowest voltage
inrange 0.1...0.8 p.u.
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Figure 2.9: Minimum value of voltage during the event.
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Event Filtering
These previously introduced approaches for unsuitable event detection were imple-
mented as 9 different filters:

e F1- Kg., value is negative (voltage and active power change have an opposing di-
rection)

¢ F2 - negative sequence ratio of voltage is over 10%
e F3 - zero sequence ratio of voltage is over 10%

e F4 - negative sequence ratio of current is over 10%
e F5 - zero sequence ratio of current is over 10%

e F6 - voltage variation during event is below 5%

e F7-r.m.s. voltage drops below 80% of nominal

e F8 - value of Ky, is at a boundary value

e F9 -value of Kgy, ¢ is at a boundary value

To analyse how many common events are detected by the filters, Table 2.4 was con-
structed. The diagonal elements of the table indicate how many events would be flagged
if a filter were be used. The other elements represent the common events of 2 filters.

According to Table 2.4 the largest number of events is flagged as unsuitable by filter
F6 (voltage variation during event) and F9 (K, ¢ at boundary), while around 90% of the
detections are common events. A large number of events is also detected by F4 (neg. seq.
ratio of current), F5 (zero seq. ratio of current) and F8 (Kgy, at boundary). The voltage
unbalance based filters F2 and F3 detect the lowest number of events. The events de-
tected by F2 can also be detected by F4 and F5. The F3 detected events by F4, F5, and
F7. Thus, when current unbalance filters F4 or F5 are applied, there is no need to apply
voltage unbalance filters F2 or F3. Similarly, filter F7 detected events can be fully detected
by applying F4 (negative sequence current ratio), or mostly detected by F2 and F5. When
applying filters F1...F9, only 3 events® out of 1843 recorded events are left. Without fil-
ter F9, this number increases to 24. This result supports the hypothesis that among the
numerous recorded events only a limited number fulfil the requirements stated in the lit-
erature (listed in Section 2.2.1). The impact of event filtering on the probability distribution
function of the estimated load model parameters is presented in Section 2.4.2.

2.4 Estimation of Exponential and ZIP Load Models

2.4.1 Non-Linear Least Squares Estimation of Load Model Parameters

The exponential load models (described in Section 1.2.2) and ZIP load models (described
in Section 1.2.3) can be estimated using the Non-linear Least Squares (NLS) estimation.
For example, it has been used in [77,105]. A performance comparison of NLS, Genetic
Algorithm (GA) and Simulated Annealing (SA) is provided in [105], and it is shown that GA
and SA do not provide a significant benefit over NLS.

8When additionally the durations of these 3 events were to be analysed, only 1 of the 3 events
left after filtering would have a duration over 4 cycles. Thus, the situation would be even worse.
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Table 2.4: Number of unsuitable events detected by a filter® (diagonal elements) and common events
for two filters (non-diagonal elements). [VII]

F1 F2 F3 F4 F5 F6 F7 F8 F9
F1 842
F2 19 65
F3 1 40 40
F4 728 65 40 1428
F5 602 64 40 1257 1264
F6 769 11 11 1193 1070 1576
F7 18 56 40 58 55 1 58
F8 682 18 10 1266 1144 1155 13 1279
F 736 1 7 M83 1025 1421 1 MO5 1557

4 Explanation of event filter F1...F9 in text.

The objective of the NLS algorithm is to minimise the sum of squared estimation error
(2.13). The estimation error is the mismatch between the estimated load model P,,,4.;,
and the measured load P,,.4s. In the context of this thesis, for load model estimation, the
initial voltage Vj, active power Py, and reactive power Qg were used as the base values
Vi, Py, and Qy, respectively. The following equations are given for active load models,
reactive load models can be estimated using similar equations.

.
min N Z (Pmodeli - Pmeasi)2 (2-13)
i=1
To estimate the exponential load model (Section 1.2.2), the following load model equa-
tion (2.14)?, and boundary conditions (2.15) are used for (2.13):

Puodeti = Pexp = Po(Vi/Vo)XExv (2.14)

—10.0 < Kgp < 10.0 (2.15)

The boundary values -10 and 10 were chosen based on load model parameter val-
ues published in the literature. In [24] device models of [20, 62-67,106] are statistically
analysed, and it is found that with 95.5% probability that the load model parameter val-
ues of devices are: —0.643 < Ky, <0.959 and —1.800 < Kgyp, o < 2.384. Furthermore,
when load models of aggregated system loads are estimated, even higher Kg,, and Exp, Q
may occur. This is apparent from the values shown in Table 2.5, where Kg,,, is in range
0.18..1.51, and Kg,, o values 2.96...6.00. Based on these findings, the limits were set to
-10 and 10. In some situations, even larger values may actually occur. In the case of ac-
tive power, high penetration level of DG increases the voltage sensitivity (and exponent)
of the net load. This is discussed in Section 2.4.4 of the thesis. In the case of K¢y, o
extremely high values have been shown to be possible in the presence of compensating
capacitor [107]. In such cases the estimated exponential models may be unreliable for
modelling the load behaviour, and other types of model should be considered.

?Corresponding to (1.1) and (1.2).
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Table 2.5: Exponential load model parameter value ranges in literature.

Reference KExp Kexp,0
[4] 0.18...1.51  2.96...6.00
[108] 0.44..141 3.2..5.22
[6] 1.16..1.76  3.46...4.10

Similarly, to estimate the ZIP load model (Section 1.2.3), the following load model equa-
tion (2.16)'°, and boundary conditions (2.17)" are used for (2.13):

Prodeti = Pzip = Po(Kz(Vi/Vo)? + K1 (Vi/Vo) + Kp) (2.16)

Kz +K;+Kp =1

—10.0 <Kz <10.0
—10.0 < K; <10.0
—10.0<Kp <10.0

(2.17)

In [24] device models of [20, 62-67,106] are statistically analysed, and it is found that
with 95.5% probability the ZIP load model parameter values of the devices are:

e —0.602<Kz<1.814

—2482<K;<2.184

—1.219 < Kp <3.127

~5.600 < Kz,Q < 6.080

—8.597 < K;,0 <6.241

—1.595 < Kp <4.741

Based on Table 2.6 the ZIP models of aggregated system loads presented in the anal-
ysed literature are in the ranges:

e —0.11<K;<0.26
e 0.38<K;<0.86

e 0.13<Kp<0.65

—0.75<Kz,0<1.74

~0.06 < K;,0 < 1.75

¢ —0.26 <Ky <0.27

OCorresponding to (1.3) and (1.5).
"The first boundary condition corresponds to (1.4) and (1.6).
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All these values are within the range of -10...10. For this reason values -10 and 10 were
chosen as the boundary values for ZIP model estimation. The highest voltage sensitivity
that could be modelled in this way would correspond to model K; = 10, K; =0, Kp = —9.
According to (3.26) (introduced in Section 3.5), this would be approximately comparable
to an exponential model with Kz, =20 (2.18).

2-104+1-040-(—9)

=20 218
104+0-9 (248)

KExp ~

Table 2.6: ZIP load model parameter value ranges in literature.

Reference K K; Kp KZ,Q KI,Q KQ
[108] -0.11...0.26  0.38...0.86 0.13..0.65 -0.75..1.74 -0.06..1.75 -0.26...0.27

An example of an estimated load model is shown in Figure 2.10 where the measured
power is fitted to an exponential and ZIP load model. The modelled load follows the volt-
age, as the model equation only takes into account the voltage sensitivity of the load.

\%
1.005 p b
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1.000 | —— P |
0.995 ——"Py | |

0.990 1 1 1 1 1
880 900 920 940 960 980

Time (s)

Active Power (p.u.), Voltage (p.u.

Figure 2.10: Measured and simulated load (estimated by exponential and ZIP model).

2.4.2 Impact of Event Filtering on Estimated Load Model Parameter Values

In the analysed DFR dataset there are 1843 events from 3 years. In Section 2.3.3 some
properties of the recorded events were plotted and analysed. Furthermore, event filter-
ing was applied to detect events that would comply with the requirements set in the liter-
ature. In this subsection the impact of filtering on estimated load models is analysed. To
enable the analysis exponential load models were estimated for all the events that are in
the dataset. The histograms of the estimated K, and Ky, ¢ values are shown in Figure
2.11.
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Figure 2.11: Estimated exponential parameter Ky, and Kg.,, o when load models are estimated for
all measured events, blue lines mark the boundary values used in estimation. Adapted from [VII]

In Figure 2.11 there are high bars at exponent value -10 and 10, which are caused by the
boundary condition used (2.15). Previously, filters F8 and F9 were defined for detecting
the boundary values of Kg,, and Kg,, o, respectively. When these filters are be applied
to the estimated load models, Figure 2.12 is acquired.
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Figure 2.12: Estimated exponential parameter Kg.;, and Kg,, o when load models are estimated for
all measured events and results at boundary values are removed. Adapted from [VII]

As the histogram (Figure 2.12) resembles normal distribution, the estimated load
model parameter values were fitted to normal distribution (with 95% confidence). The
mean U and the standard deviation o were calculated, and the values shown in Table
2.7 were acquired. The corresponding estimated Probability Density Functions (PDF) are
shown in Figure 2.13 and Figure 2.14.

The estimated Kk, and K, o values of the events detected by the filters F1...F9 are
shown in Figure 2.15. The histogram of filter F1 (Figure 2.15a) indicates that the usage of the
filter may cause additional offset error. When the negative values of Kg,, are removed,
indicated by filter F1 as bad values, the symmetry of the estimated Kg,, values decreases
and the mean value increases. Furthermore, after this change, the distribution of the
values is no longer normal distribution. This change of mean value can be viewed as offset
error. To avoid this error, filter F1 may need to be omitted when the mean value of the
estimated load models is used. From Figure 2.15b, Figure 2.15c and Figure 2.15g it is clear
that the events with the Ky, and Kg,, o values corresponding to the boundary values
are not detected by filter F2, F3 and F7.
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Table 2.7: Mean value p and standard deviation 6 of normal distribution fit (with 95% confidence),
MSE weighted mean value s and MAE weighted mean value uyar based on all measured
events, except boundary values. [VII]

Exp. Model Average Std.Dev., MAE Weight. MSE Weight.

Parameter u o Avg., Lysk Avg., UyaE

Kexp 0.792 2.854 0.927 0.782

Kexp,0 -0.448 4.857 0.176 1.034
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Figure 2.13: Estimated exponential parameter Kg, when load models are estimated for all mea-
sured events and results at boundary values are removed. Adapted from [VII]
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Figure 2.14: Estimated exponential parameter Kg., o when load models are estimated for all mea-
sured events and results at boundary values are removed. Adapted from [VII]

44



800
600
- 4~
5 5
2 400 3
o o
200
0
-10 0 10 -10 0 10
Exponent KEXp and KExp,Q Exponent KEXp and KEXp,Q
(a) Filter 1 (b) Filter 2

Count

Count

Count

-10 0 10 -10 0 10
Exponent KEXp and KEXP’Q Exponent KEX'D and KExp,Q
(c) Filter 3 (d) Filter 4
600 800
600
400 -
5
8 400
200
200
0 0
-10 0 10 -10 0 10
Exponent KEXp and KEXp’Q Exponent KEXp and KExp,Q
(e) Filter 5 (f) Filter 6
30 800
600
20 ¢ -
5
8 400
10 1
200
0 0
-10 0 10 -10 0 10
Exponent KEXp and KEXp,Q Exponent KEXp and KEXp'Q
(g) Filter 7 (h) Filter 8 and 9

Figure 2.15: Estimated Kg., and Kg,,, o of events flagged by different event filters.
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Estimated Load Models After Event Filtering

Filters F2...F9'? were applied on the load models estimated from the DFR data. After fil-
tering the estimated Kg,, values corresponded to Figure 2.16 and K, o values to Figure
2.17.

[ ]Estimated Kexo
Estimated Normal Distribution of KEXp

0.20 .
2
5 015 .
©
8 0.10 | 1
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0.05 _—l .
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Figure 2.16: Estimated exponential parameter Ky, when load models are estimated for filtered
events.
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Figure 2.17: Estimated exponential parameter K, , o when load models are estimated for filtered

events.
The mean value of Kg,,, (Table 2.8) increased from 0.792 (Table 2.7) to 1.018 as a result

of applying filters F2...F8. The standard deviation (with 95% confidence) decreased from
2.854 to 2.498. This decrease in standard deviation indicates that the filtering could have
improved the accuracy of the estimated value of Kg,,,. In comparison, [109] obtained av-
erage values of Kgy, in the range 0.79...1.62 with standard deviations of 0.56...1.34. Com-
pared to these values the obtained mean value is in the same range, but the standard
deviation is significantly larger.

The mean value of exponent K., o changed according to Table 2.7 and Table 2.8 from
-0.448 to -0.078, while the standard deviation increased from 4.857 to 5.148. In [109],
the Kgxp,0 mean values are in the range 2.69...5.73 with standard deviation 1.99...2.50.
Compared to these values, the standard deviation of the values is around 2 times larger.
Thus, compared to the results presented in the literature, this load model estimation ap-
proach may be less accurate. Some possible reasons for this difference could be the load

12F1 was omitted to avoid possible skewing of the mean value.
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behaviour difference: higher variability of voltage sensitivity of the measured load com-
pared the loads analysed in the literature. Alternatively, it could be caused by the differ-
ence of voltage level, time of measurement (e.g. typical loads from the 1990s and 2000s
are different from the loads in the 2010s and 2020s).

Table 2.8: Mean value u and standard deviation ¢ of normal distribution fit (with 95% confidence),
MSE weighted mean value ;s and MAE weighted mean value L4 based on filtered events [VII]

Exp. Model Average Std.Dev., MAE Weight. MSE Weight.

Parameter u o Avg., LysE Avg., UyaE
Kexp 1.018 2.498 0.889 0.763
KExp.0 -0.078 5.148 0.272 0.964

2.4.3 Impact of Measurement Time on Estimated Load Model Parameter Values

In publication [lIl] a case study was presented. In the study small voltage disturbances
were induced at different times of the day using shunt reactors of the system, and load
models were estimated for 2 different substations. Voltage changes were induced at 3
different times of the day: night (around 3 am), day (around 2 pm) and evening (around
7 pm). Temperature in these periods was near 0°C. In addition, in the first substation
an additional test was carried out on another day with significantly colder weather (the
temperature at the time of the measurement was around -10°C). The number of recorded
voltage disturbances with relative voltage difference (2.6) over 0.5% is shown in Table 2.9.

Table 2.9: Number of voltage disturbances. [l11]

Substation ColdDay Day Evening Night
5 " 8 10
2 - 1 8 10

The estimated exponential load models corresponding to the detected voltage
changes are plotted in Figure 2.18. There is significant variation for the estimated values,
which was probably caused by the stochastic changes of the load. The values pose the
question "How can we find a representative value?" Some potential methods for this are
discussed in Section 2.5.

In order to acquire a representative value for each time period (cold day, day, evening,
night), the mean and error weighted mean (Section 2.5) value were calculated. The cal-
culated values are shown in Table 2.10 and Table 2.11. Based on Table 2.10, on a cold day
the Kgy, is higher compared to a warmer day. Thus, the Kg,, value has a temperature
dependence, which is most likely caused by heating loads. To detect cooling loads, mea-
surements from a significantly warmer day would be needed. The lowest Kg,, values
occur for the nighttime measurements, and highest during the evenings. According to
Table 2.5, the daytime values of Kg,, depend the most on the post-processing method
used. The differences are up to 20%. At the other times of the day the differences are
within 10% of the calculated value.
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Figure 2.18: Exponential load model parameters estimated at 2 substations at different times of the
day.

Table 2.10: Impact of post-processing method on calculated value of exponent Kg,. [IlI]

MSE NMSE MAE NMAE
Weight. Weight. Weight. Weight.
Substation Time Period Avg. Avg. Avg. Avg. Mean Median
Cold day 1.53 1.58 1.95 1.97 2.06 140
Day 1.44 1.46 1.60 1.61 1.77 1.35
Evening 1.58 1.58 1.59 1.59  1.62 160
Night 1.06 1.06 1.09 1.09 113 1.08
Day 1.04 1.05 1.23 1.23 1.42 1.02
2 Evening 2.48 2.43 2.56 2.53 254 227
Night 0.81 0.81 0.77 0.77 0.72 0.80

The reactive load model parameter Kg,, o is in many cases on the boundary value 10.
A different situation is seen for the daytime values of K, o, which are mostly close to 9.
This could have been caused by the higher reactive power consumption that decreased
the relative stochastic changes of the reactive loads. An exceptional situation is the night-
time value of substation 1, which is highly dependent on the post-processing method and
obtained negative values.
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Table 2.11: Impact of post-processing method on calculated value of exponent K, o. [1ll]

MSE NMSE MAE NMAE
Weight. Weight. Weight. Weight.
Substation Time Period Avg. Avg. Avg. Avg. Mean Median
Coldday 8.54 8.66  8.65 8.81 6.37 8.30

1 Day 8.81 9.00 9.04 913 9.36 10.00
Evening 10.00 10.00 10.00 10.00 10.00 10.00
Night -3.07 -285 -5.67 -5.67 -758 -10.00
Day 8.82 8.84 8.83 8.83 8.83 8.84
2 Evening 10.00 10.00 10.00 10.00 10.00 10.00

Night 10.00 10.00 10.00 10.00 10.00 10.00

2.4.4 Impact of Distributed Generation on Estimated Load Model Parameter Values

In [110-112] aggregated bus loads that include wind turbines are modelled by composite
models. The composite models include a static load model and an induction machine
model (or several machine models), which are connected in parallel. Several composite
models are discussed and compared in [110]. Parameter estimation methods for compos-
ite models are presented and analysed in [111,112].

Figure 2.19 illustrates how the static voltage characteristic of an aggregated composite
load (combined response of a DG modelled as negative load and voltage sensitive load
with voltage characteristic K, 1 = 2, corresponding ZIP model: Kz =1, K; =0, Kp =
0). The rise of the voltage characteristic (voltage sensitivity of the load) increases with
increasing penetration of DG.

3.5 T T T T T T T
301 P KExp‘L=2 .
5s | P.:40% DG and K¢, =2 |
’;: S0l P 60% DG and KExp,L=2 )
a ~ PT: 80% DG and KEXp'L=2
g 15¢f i
g /
o
a 1.0 / ]
)
>
B 05 1
<
0.0 1
_05 - 4
1.0 . . . . . . .
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

Voltage (p.u.)

Figure 2.19: Normalised voltage characteristic Py, of exponential load model with exponent Kg., | =
2. Aggregated load: P;, with DG 40% of Py, 80% of Py and 120% of Py.
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In [11] aggregated loads including distributed generation are estimated by an exponen-
tial load model using voltage changes induced by a smart transformer. The voltage sen-
sitivity of the exponential model is assumed to be equal to the exponent (2.19), similarly
to [113].

dP/P,
avyv, B

In [11] (2.20) is derived by assuming the Distributed Generation (DG) to be operating
at a unity power factor (Qg = 0), and the power generated by the DG (Pg;) to be smaller
than the load of the feeder P, (P; < P.).

(2.19)

Py

—L (2.20)
P —Ps

KExp,T = KExp,L .

Based on (2.20) it is possible to derive (2.21), which describes the voltage sensitivity of

the load Kg,, 1 based on apparent voltage sensitivity Ky, of the feeder, load power P,
and generated power Pg.

P —Pg

B (2.21)

KExp,L = KExp,T :

When the penetration level of DG corresponding to the fraction P; /P, is denoted by
factor B3, (2.20) and (2.21) can be derived to correspond to (2.22) and (2.23), respectively.

1
Kexpr = Kgxp,L - m (2.22)
KExp,L = KExp,T ' (1 - ﬁ) (2.23)
The voltage sensitivity of the ZIP load model is (2.24).
dP/P,
=2-K,+K 2.24
av v, 7+ K; (2.24)

Equation (2.20) was derived based on the voltage sensitivity of the exponential model.
Applying the same factors on voltage sensitivity of ZIP load model (2.24), equation (2.25)
with multiple solutions is acquired.

2-Kzr+Kj1 = -(2-Kzr+KiL) (2.25)

L
PP

One solution to (2.25) is (2.26). Using DG penetration level 3, it can also be written as
(2.27). Similarly, (2.28) and (2.29) can be acquired.

P
K;7 = K
zZ,T PLP_ po NEL
_ bk (2.26)
- K
1T P —Po I.L
Kpr =1—Ki 7 —Kz1
Kyr— ' .k
ZT =12 B Z.L
1 (2.27)
K 7= K :
LT= 10 B IL




KL= 7 ‘K1 (2.28)

K =(1-B)K.r (2.29)

Figure 2.20 illustrates how the apparent voltage sensitivity Kgy, (2.20) of the feeder
depends on the penetration level of the DG. The load is assumed to have exponent
Kgxp = 2. ltis clear that the DG increases the voltage sensitivity of the load and DG
aggregate, the apparent load of the feeder.

30 T T

Exponent KExp,T
=
w
T

0 10 20 30 40 50 60 70 80 90
Penetration Level of Distributed Generation (% of P LO)

Figure 2.20: Impact of penetration level of DG on exponential voltage characteristic of aggregated
load model (based on (2.20)).

In order to validate how closely (2.20), (2.21), (2.26) and (2.28) match the measure-
ment data a case study was conducted in a medium voltage distribution network. The
case study is presented and discussed in [IV] and [VIII]. During the measurement period
of the case study the average load of the customers connected to the feeder was 7.4 MW.
There is 6.7 MW of DG connected to the feeder: 2 wind turbines (2.3 MW and 2.0 MW),
and a 2.4 MW combined heat and power plant (CHP). The DG units are operated in fixed
cos¢ mode. Measurement data were collected using PQM and SCADA system. The volt-
age changes shown in Figure 2.21a were induced by OLTC switching. The first and last
OLTC position change were 1 tap, the other changes were 3 taps. The generated power
in Figure 2.21b was acquired from the SCADA system. Rapid generator output power Pg,,
changes were caused by the unplanned starting and stopping of a wind turbine that might
have been caused by a combination of bad configuration of the control system and voltage
changes.
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(b) Measured and calculated power data. Calculated load power Py, total power output of the distributed generation according
to SCADA system Pg, and measured transformer load Pr (net load). Voltage events marked by vertical lines.

Figure 2.21: Measured and calculated values during the case study of distributed generation impact.
Adapted from [VIII]

When the load model parameters (exponential model parameter K, 1) were esti-
mated based on calculated total load (supplied by the DG units and the transformer), the
values were in the range 0.74...1.24 (see Table 2.12). The static load model of the aggre-
gated transformer load (sum of DG and load) displayed significantly higher values in the
range 1.30...2.92 (lower level of Pg,.,) and range 5.11...8.15 (higher level of Pg.,). The net
load model parameter values are given in Table 2.13. This was an expected result consid-
ering Figure 2.19 and Figure 2.20.

Using (2.20) and (2.21) the apparent transformer load model parameter Kg,, r was
calculated from Kgy, 1 and vice versa. The calculated values are shown with estimated
values in Figure 2.22. In the figure, the estimated Ky, r and Kgy, 1 values of the first
two events and the 4t event closely match with the calculated values. However, the 3",
5t and 6t event display significant differences for the transformer load exponent Kexp,T-
When the estimated exponential models and modelling error in Table 2.13 is compared to
the calculated models in Table 2.14, it is clear that there is a significant difference in the
same parameter values, as noted in Figure 2.22. However, the modelling errors (MSE and
MAE) are similar for all the event-based models. Thus, the calculated exponent values
have an accuracy similar to the estimated values, despite the value difference.
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Table 2.12: Estimated load models of connected load

ZIP Model Exponential Model

MSE MSE
Event Kz, Kio Kpr ((107%) MAE  Kgyo ((107°) MAE
1 0.38 -0.02 0.65 0.19 0.010 0.74 17 0.01

2 -8.32 1766 -8.33 32.43 0.422 1.24 10 0.008
3 471 -877 506 785 0.074 0.79 14 0.009
4 10.49 -20.00 10.51 40.50 0.170 0.62 9.9 0.008
5 1.32 -205 173 0.30 0.014 0.65 8.1 0.008
6 207 -3.09 202 0.17 O0.01 1.03 4.7 0.006

Table 2.13: Estimated load models of transformer load (net load)

ZIP Model Exponential Model
MSE MSE

Event K;r Kir Kpr ((1072) MAE Kgyr (-(1073) MAE
1 431 -3.40 0.09 187 0.0 51 19 0.105
2 -8.69 20.00 -10.31 4.82 0.6 2.92 1.9 0.034
3 -5.36 20.00 -13.64 10.03 0.26 8.1 14 0.093
4 10.83 -20.00 1047 376 0.16 1.30 1.3 0.030
5 -2.46 13.61 -1015 6.67 0.20 7.64 11 0.084
6 461 -144 -217 0.47 0.05 8.15 3.5 0.046

12 T T T T T T

[N Load
10 | | Load (calc) _
[ Net load

[ Net load (calc)

Exp
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Figure 2.22: Actual load model (exponent K, 1) and apparent net load (exponent Kg., 1) of the
feeding transformer.
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Table 2.14: Transformer load modelling by calculated load model (based on DG penetration and the
model of the connected load

ZIP Model Exponential Model
Event KZ,T K]7T KP,T MSE MAE KExp,T MSE MAE
1 256 -0.01 -1.55 0.020 0.1 518 0.019 0N

-2112  44.77 -22.65 0.286 0.36 3.12 0.002 0.03
35.52 -66.44 31.92 1156 0.76 5.68 0.018 0.10
26.08 -49.73 24.65 0.160 0.35 1.55 0.001 0.03
13.47 -2217 9.70 0.019 O.MN 5.27 0.015 0.10
14.64 -23.69 10.05 0.004 0.05 5.36 0.004 0.05

o N

In the case study the DG units were installed close to the 10 kV substation. This means
that the voltage profile of the medium voltage feeder was not affected by the generation.
This situation is similar to the parallel operation of DG units and feeder with loads. The
DG has an impact on the load of the transformer, but not on the operation points of the
loads. When the DG is further from the substation, somewhere on the feeder, it would
have an impact on the voltage profile of the feeder, losses of the feeder (analysed in [14])
and load bus voltages. The impact of DG on feeder voltages is discussed in [114].

2.5 Post-processing of Estimated Load Models

In the case study presented in [llI] the intra-day variability of load models was analysed
based on relatively small induced voltage disturbances (mostly < 3%). The small load
deviations caused by these voltage changes are of a comparable size to the stochastic
changes of the load. In order to quantify the fit of the estimated models (match between
the measured response and estimated response), several commonly used error measures
presented in Section 2.5.1 were adopted. A method is presented in Section 2.5.2 for post-
processing a set of estimated load model parameter values based on the estimation er-
rors.

2.5.1 Estimation Error
The estimation error quantifies the mismatch between the load calculated using the es-
timated load model P,,,4.;, and the measured load P,,..s. For calculating load P,,,4.; the
measured voltage values are used and the load is calculated based on the equation of
Pexp (11), Qexp (1.2), Pzp (1.3) or Qz;p (1.5). In the context of this thesis the load models
were estimated by using the initial voltage Vj, active power Py, and reactive power Qg as
the base values Vj,, P,, and Oy, respectively. When calculating the value P,,,4.;, a similar
use of base value is applied as during the estimation. The following equations are given
for active load models, reactive load models can be calculated using similar equations.
Four different measures of error are used in Section 2.4.2, Section 2.4.3 and Section
2.5.2 for calculating a representative value from a set of estimated load models:

e Mean Absolute Error (MAE) (2.30)
e Normalised Mean Absolute Error (NMAE) (2.31)
e Mean Square Error (MSE) (2.32)

e Normalised Mean Square Error (NMSE) (2.33)
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The measurement samples are denoted in the following equations by B,,..s; and mod-
elled values B,,,4.1;, Where i is the index of the sample from 1...N. N is the total number
of samples.

1 N
MAE = N Z |Pm()deli - Pmeasi‘ (2.30)
i=1
1 ul Pmodel' - Pmeavi
NMAE = — ) |- e (2.31)
N,-=1 Prneasi
1Y )
MSE = N Z (Pmodeli _Pmeasi) (2.32)
i=1
2
NMSE — ii <Pmodeli_Pmeasi> (2'33)
Ni=1 Preasi

2.5.2 Calculating Representative Value from Set of Values
Typically, several load model parameter sets are estimated when measurement-based
load modelling is applied. One load model is estimated for each processed event (anal-
ysis window). To find a representative model, commonly, the average value is calcu-
lated for each parameter of the used model. This approach has been used for exam-
ple in [9, 42,70, 77,105, 109, 115]. The outliers of estimated load model parameter val-
ues can significantly affect the results when the number of averaged samples is relatively
small. This has also been pointed out in [89]. In contrast to the common averaging ap-
proach, [116] uses a multi-curve identification process. In this approach the measurement
data of several events is used to estimate a load model. Considering the stochastic nature
of the load, the accuracy of the estimated load models varies. For this reason, it is rea-
sonable to give a higher weight to more accurate models when the representative load
model is calculated.

When M load model parameter values K; have been estimated, and for each a weight
w; (describing estimation accuracy) is given, the weighted average value can be calculated
by (2.34).

(2.34)

The accuracy of estimated load models is often quantified by a measure of error (e.g.
by MAE (2.30), NMAE (2.31), MSE (2.32), or NMSE (2.33)). If the accuracy of the estimated
load model parameter values K; is assumed to be inversely proportional to the modelling
error ¥;, the weight w; in (2.34) can be replaced by 1/%. In this thesis, MAE (2.30), NMAE
(2.31), MSE (2.32), or NMSE (2.33) are used as the value of y; when using (2.35).

s
x| =

>
I
T

(2.35)

M=

1
x|~



The estimation error weighted averaging was used in Section 2.4.2 and Section 2.4.3
for post-processing the estimated load models. The results in Section 2.4.2 indicate that,
compared to averaging, the MAE and MSE weighted averaging are less affected by the
event filtering (selection of events). This could indicate a greater robustness. The results
in Section 2.4.3 indicate a 10...20% difference caused by the selection of measure of error.
Due to the significant uncertainty and unknown true value, it is difficult to assess which
of the calculated values has the best accuracy.

2.6 Conclusion and Discussion

There are different measurement systems used in the transmission system for acquiring
measurement data (Section 2.2.2). However, only some of these systems are usable for
load model estimation. The placement of the devices and availability of the measure-
ment data determines the observability of the aggregated loads. To choose representa-
tive loads, and grouping similar loads into clusters, K-means clustering was introduced
in Section 2.2.3. The aggregated loads were grouped into 10 groups based on monthly
load class compositions. In Section 2.3.3 and Section 2.4.2 the historical DFR data of a
substation were processed to illustrate the impact of event filtering and to detect unsuit-
able events (from a load model estimation viewpoint). When all the event requirements
stated in Section 2.2.1 were applied on the analysed DFR dataset in the strictest way, only
1 event was left from recorded 1843 events. When the dataset was used for estimating
static load models in Section 2.4.2 the large values of standard deviation indicated a re-
sult with low reliability. As an alternative to the commonly used averaging, estimation
error weighted averaging was proposed in Section 2.5, and the method was applied on
load models estimated in Section 2.4.2 and 2.4.3. The error weighted averaging proved to
be less sensitive to event filtering than normal averaging. In the conducted case studies
the true value of the load was unknown, and for this reason it was not possible to deter-
mine the post-processing method that would provide the most accurate results. In Section
2.5.2 MAE (2.30), NMAE (2.31), MSE (2.32), and NMSE (2.33) were used as the measures
of goodness-of-fit. Other measures of error could be tested for ¥; in (2.35). The impact
of DG on the estimation of aggregated load model was discussed in Section 2.4.4 for the
simplest case when the DG unit and the load are connected close to the aggregated bus
and the feeder losses are not affected by the DG output. The simple analytical equations
used for predicting the apparent voltage sensitivity of the load was found to work well
under such circumstances. Other network configurations could be analysed.
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3 Static Load Model Conversion

3.1 Introduction

The use of several different load models sometimes leads to model conversion: param-
eter values of one type of load model are known, and the parameter values of another
type need to be acquired. In this chapter methods for exponential load model to ZIP (sec-
ond order polynomial) load model conversion, and ZIP model to exponential load model
conversion, are developed and presented.

In Section 3.3, load model conversion using Non-linear Least Squares (NLS) is dis-
cussed. This approach can be used for either conversion direction, and can handle a
variety of application needs. Thus, it is the most flexible approach for conducting the
conversion. In Section 3.4 several analytical methods for exponential to ZIP load model
are presented. These methods are denoted in Table 3.1 by AM1, AM2, AM3, similarly to
[17 and [VI]. Among those methods there are some that are suitable for converting expo-
nential models to constrained®™ ZIP models, and some which can lead to unconstrained®
models. In Section 3.5 an analytical method for ZIP to exponential load model conversion
is presented. This method is widely used, and is included to give a better comparability
of the methods.

Table 3.1: Analysed conversion methods and the available conversions.

Method Section From Exponential to From ZIP to

ZIP (constr.)*  ZIP (unconstr.)* Exponential

NLS 3.3 Yes Yes Yes

AM1 3.41 Yes No No

AM2 3.4.2 Yes Yes No

AM3 3.4.3 No Yes No
Analytical (ZIP to exp) 3.5 No No Yes

* "Yes" in only unconstrained column means that using the method can in some cases lead to
unconstrained® ZIP models. When "Yes" is in both exponential to ZIP columns, the user can
choose if they wish to apply constraints to the output models or not.

There is typically a mismatch between the original model and the converted model. In
order to quantify the difference, in Section 3.2 the measures of error are defined, which
are used for comparing the performance of the methods. The estimated load models
presented in Section 2.4.4 are converted in Section 3.6 to provide a numerical example of
load model conversion. To illustrate how the conversion error affects the results of load
flow calculations, the results of a case study are introduced in Section 3.7.

The included conversion methods for exponential to ZIP load model conversion were
first presented in [I] and [VI]. The developed analytical methods provide lower conver-
sion error than the analytical method described in the literature™. The methods for ZIP

B1n some literature unconstrained ZIP models are defined as accurate ZIP models, for example
in [18, 24]. As the term "accurate load model" is used in this thesis with another meaning, the
terms constrained and unconstrained ZIP load model are used for classifying ZIP models in respect
to parameter constraints. The difference between a constrained and unconstrained ZIP model is
explained in Section 1.2.3. Briefly, the multipliers of ZIP model parameters of the constrained model
are limited to the range of 0...1. The unconstrained model does not have this value limitation.

14Analytical conversion method described in [117] was implemented as the method AM1 for com-
parison. The implementation is described in Section 3.4.1. Comparison to the developed analyti-
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to exponential load model were presented and analysed in [lI, VI]. Different aspects of
conversion error were analysed in [l, Il, VI]. Furthermore, in [VI] the impact of conversion
error on load flow calculation results was discussed and illustrated by a case study. The
author found no similar analysis in the literature.

3.2 Measures of Conversion Error

In this thesis, in the case of load model conversion, a mathematical model of a voltage
characteristic of a load is converted to another mathematical model. Depending on the
mathematical models used, voltage characteristic and conversion method, the original
and the converted model may have a mismatch. This mismatch is considered to be the
load model conversion error, and the original model describing the voltage characteristic
is assumed to be accurate. To illustrate the conversion error of static load models, two
static voltage characteristics and the mismatch of the characteristics are shown in Figure
3.1.

Converted = Accurate
load model § load model
P \
=] .
s Load model conversion error at V1
-
P
!
Vi

Voltage

Figure 3.1: Load model conversion error (model mismatch) at voltage V| when accurate load model
is converted to a converted load model. Due to the conversion error, the converted model indicates
load Py~ at V) instead of P;.

To quantify the previously described mismatch of load models (original and converted),
several measures of error can be used. The original load characteristic (input model) Py
is assumed to be accurate. The difference between converted (calculated/fitted) charac-
teristic Poyr and input characteristic Py is considered to be the conversion error. In the
context of this thesis, depending on the conversion direction and the converted model,
Py and Poyr can be Pexp (1.1), Qexp (1.2), Pzip (1.3) or Qz;p (1.5).

The difference €(V;) (3.1) of the original (accurate) load characteristic Py and con-
verted load characteristic Ppy7 at voltage V; is considered to be the conversion error at
voltage V;.

e(Vi) = Piv(Vi) — Pour (Vi) (3.1

Similarly, the relative difference 1 (V;) (3.2) of the original (accurate) load characteristic
Py and converted load characteristic Ppy7 at voltage V; is considered to be the relative
conversion error at voltage V;.

_ Pn(Vi) —Pour (Vi)
i) = Piv(Vi)

cal method AM2 is provided in Section 3.4.2. Furthermore, Section 3.4.3 indicates that developed
method AM3 provides even lower conversion error than AM1and AM2.

(3.2)
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Conversion error £(V;) describes the conversion error at a specific voltage V;. To com-
pare the performance of conversion methods across a voltage range V; € {V},V,...Vy}
(i, N € N) the Mean Absolute Error (MAE) (3.3) can be used.

N

1 ¥ 1
MAE = 35} eVl = i Y 1Pin(V0) — Pour (V) 33)
i=1 i=1

Similarly, the relative conversion error 11(V;) describes the conversion error at a spe-
cific voltage V;. To quantify the relative conversion error across a voltage range V; €
{V1,V2...Vx} (i, N € N) the Normalised Mean Absolute Error (NMAE) (3.4) can be used.

Vi) — Pour (Vi)

P (Vi) (3.4)

NMAE = i| W) =1 i Fin
_Ni:ln l _Ni:l

In the thesis and related publications, voltage range 0.8...1.2 p.u. is used as MAE and
NMAE calculation range V;...Vy.

3.3 Using Non-linear Least Squares Optimisation for Load Model Conver-
sion

In Chapter 2 load models were estimated from measurement data using an NLS fitting
(Section 2.4.1). For estimation, a load model was fitted to measured values, and the goal
was to minimise the difference between measured and modelled values. The load model
conversion is also a curve fitting problem: one curve (original load model) is known, and
another curve (converted load model) is fitted with the goal of minimising the difference
between the two curves. This optimisation problem can be written as a NLS optimisation
problem, which has the objective of minimising the sum of squared errors (3.5). In the
case of NLS, the error y(V;) is minimised across voltage range V; € {V;...Vy} (i,N € N).

N
min Y [y (Vi) (3.5)
i=1

Error y(V;) can be replaced by absolute conversion error £(V;) (3.1) formulating (3.6)
for minimising absolute error, and by relative conversion error n(V;) (3.2) formulating
(3.7) for relative conversion error minimisation. The input model is denoted by Py and
the output model by Poyr. In the context of this thesis, depending on the conversion
direction and the converted model, P;y and Poyr can be Pexp (1.1), Qrxp (1.2), P7ip (1.3)

or QZIP (1.5).

=

N
min Y [e(V))? = Y [Piv (Vi) — Pour (Vo)) (3.6)
i=1 i=1

>The voltage range was motivated by the PSCAD implementation of the exponential load model
described in Section 1.2.2. In PSCAD calculations, the exponential model is replaced by a constant
impedance model when the load bus voltage is not within range 0.8...1.2 p.u. The PSS®E main load
model (similar to ZIP model) uses another approach for modelling load at low voltages. The PSS®E
approach is described in Section 1.2.3. Common to both software, at low voltages, the configured
exponential or ZIP model is not used for calculations.
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N 12
min Y (V) Z Pin PIN(I;O)”T(V’) (37)

In the case of exponential to ZIP model conversion, the NLS optimisation problem, (3.6)
or (3.7), is subject to Kz + K; + Kp = 1 (1.4). To restrict the approximated ZIP models to
constrained models, additionally: 0 < K; < 1,0<K;<1land 0 < Kp < 1.

3.4 Analytical Methods for Exponential to ZIP Model Conversion

3.4.1 Analytical Method AM1

The method proposed in [117]

An analytical method for converting exponential load models to ZIP models is described
in [117] without any reference to other publications. The analytical method AM1 is an
improved version of the method. The method proposed in [117] is case based: depending
on the exponent Kg,, value a ZIP model is chosen or a set of equations is used for acquiring
the ZIP model parameter values.

Exponential models with small exponent Kg,, values (Kg), is less than 0.5) are con-
verted to a constant power model. The constant power component Kp of ZIP model is
set to 1, thus Kz = K; = 0. When the exponent Ky, is less than 1 (and larger than 0.5),
the constant current model is used: Kj is set to 1, thus K = Kp = 0. Exponential mod-
els with exponent greater than 2 are converted to constant impedance model: constant
impedance component K of ZIP model is set to 1, thus K; = Kp = 0. When the value of
KEyxp is between 1and 2, the following equation system is solved:

{KZ k=1 (3.8)

2-Kz+K; = Kgxp

The used analytical method AM1

The previous description of the conversion method leaves the exponential to ZIP model
conversion undefined for situations when Kg,, = 0.5, Kgx, = 1, and Kg,, = 2. This is
caused by the use of strict inequality relations, which do not include the limits. Moreover,
solving the equation system (3.8) each time a conversion is conducted is impractical.

At Kg., = 0.5, both the constant power and constant current load model would be
around 0.5 powers off from the value with lowest error. Thus, adding equal to term to
either causes an error. The previously undefined model (Kg,, = 0.5) was assigned a con-
stant current model by (3.10). The second undefined model (KExp = 1) behaves as a con-
stant current model, so it was assigned to (3.10). The third undefined model Kegyp =2
would behave as a constant impedance, thus it was assigned to (3.12). The equation sys-
tem (3.8) has a solution (3.11). Kz = K, — 1 can be derived by subtracting the first equa-
tion of (3.8) from the second equation of (3.8). Next, the equation K; = 2 — Kg,,, can be
found by replacing K7 in the first equation of (3.8) by Kz = Kg.p — 1.

After making the described improvements, the conversion method can be presented
by the following set of case-based equations:

K;=0
KExp <05—= <K =0 (3.9)
Kp=1
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Kz=0

Kp=0
Kz = Kgap— 1
1.0 < KExp <20— SKj=2- KExp (3.11)
Kp=0
Kz=1
Kewp >2.0— { K =0 (3.12)
Kp=0

3.4.2 Analytical Method AM2

For conversion to constrained ZIP model: analytical method AM2 (constrained)

When analysing the conversion error of method described in Section 3.4.1 it was found
that the method has an error peak at Kg,, = 0.5. Around that point, the load models
were converted based on (3.9) and (3.10). Near base voltage Kgx, ~ 2- Kz + K;. Fur-
thermore, when K7 is chosen to be K7 = 0, the previous equation becomes Kg., ~ K,
while Kp = 1 — K;. When these two equations (3.14) are used for calculating ZIP models
between the constant power and constant current model, the conversion error is signifi-
cantly decreased, as can be seen in Figure 3.2.

0.10 T T T T T T T

AM1
008F \ | AM2 (constrained)

0.00 L Massssses mrreas, :
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Exponent KEXp

Figure 3.2: Exponential to ZIP load model conversion error when analytical method AM1 and ana-
lytical method AM2 (constrained) are used for converting exponential load models with low K,
values. NMAE is used for quantifying the conversion error.

The conversion method described in Section 3.4.1 is limited to the constrained ZIP
model: all solutions of the equation system (3.9)-(3.12) limit ZIP model parameters K7,
K;, Kp to 0...1. The equations (3.13)-(3.16) have a similar property. The converted models
differ from the models converted by the method AM1 described in Section 3.4.1 only when
0<Kgy <L

K;=0
KExp < 0— K; = 0 (313)
Kp=1
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Kz=0

0 < KExp < 1— K] = KExp (314)
Kp=1—Kg,p
Ky =Kgyp— 1
1< KExp <2 Ki=2— KExp (3.15)
Kp=0
K;=1
Ky >2— {K =0 (3.16)
Kp=0

For conversion to unconstrained ZIP model: analytical method AM2 (unconstrained)
Equation (3.13) models loads inversely proportional to voltage by constant power model.
Experimentally it was found that these models can be more accurately converted by (3.17).
Moreover, the load models with high voltage dependence (Kg,, over 2) were estimated
in the case of method AM1 and previously described implementation of AM2 (with con-
strained ZIP model output) as constant impedances after conversion in the case of (3.16).
To increase the conversion accuracy of models with high voltage dependence, the limits
of (3.15) were relaxed, and (3.18) was acquired.

0.04
AM2

0.03 F . —G- KZ=0; KI=KExp; KP=1-KExp ( 4
— VI KZ=KEXp-1; K|=2-KEXP; Kp=0
3
2
w 0.02 )
<<
=
=2

0.01 )

0 |

-2 -15 -1 05 0 05 1 15 2 25 3 35 4
ExponentKE
xp

Figure 3.3: Analytical method AM2 (unconstrained) uses Equation (3.17) and (3.18) for different range
of Kgxp values. When either equation is used for the whole K, range, the NMAE would be higher
than the error of method AM2 (unconstrained) for part of the Kg,,, range.

These modifications lead to accurate load models when Kg,, < 0 or Ky, > 2.

K;=0

Keyp <1 =  Ki =Kgyp (3.17)
Kp=1—Kgyp
K; = KExp -1

KExp >1—= <K =2 *KExp (3.18)
Kp=0
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The NMAE of analytical method AM1and AM2 (unconstrained ZIP models) is illustrated
by Figure 3.4. When Ky, = 0 or 1.0 < Kg,, < 2.0, the conversion results of method AM2
(unconstrained) and the method AM1, described in Section 3.4.1 are the same. For the rest
of the K, values, the NMAE of AM2 (unconstrained) is lower, and the method provides
a more accurate conversion.

0.25

0.20

0.15

0.10

NMAE (p.u.)

0.05

0.00

Exponent KEXp

Figure 3.4: NMAE of analytical method AM1and AM2 (unconstrained).

3.4.3 Analytical Method AM3

The analysis of load model conversion error of NLS methods (methods presented in Sec-
tion 3.3) indicated that there are typically three intersections of input and output charac-
teristic. The three intersections are indicated in Figure 3.5 by O conversion error. The first
of the intersections is located at a voltage below base voltage (in Figure 3.5 at 0.84 p.u.),
the second at the base values (initial or nominal voltage and load, in Figure 3.5 1 p.u.),
and the third at a voltage above the base value (in Figure 3.5 at 1.15 p.u.). This aspect of
conversion was used for deriving an additional conversion method AM3 described in this
section.

0.15
0.10
0.05

0.00 |‘|o||”“””|“|llll”l”““ll.'l‘”

-0.05

Conversion Error € (p.u.)

-0.10

-0.15 . . . . . . . )
0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2

Voltage V, (p.u.)

Figure 3.5: Voltage dependence of conversion error of non-linear least squares conversion based on
absolute error minimisation. Method NLS abs.
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At the intersection point of the converted exponential and acquired ZIP model, the
equations (1.3) and (1.1) are equal

2
\% \%
K7 | — K| — K
z(vb>+1<vb)+P

Dividing (3.19) by P, leads to

2 Kr.

1% \% VO TE
K;- | — K- — Kp=|— 3.20
7 (Vb) +K; (Vb)+ P (Vb> (3.20)

Replacing Kp in (3.20) by 1 — Kz — K; and simplifying the equations leads to derivation of

V KExp
P, —P, <) (3.19)

()

1% A a

K7 —+1 Ki=—~F—— 3.21

g ( s > AW (3:21)
Vi

Previously it was mentioned that the characteristics intersect at two voltages (in ad-

dition to nominal/initial), denoted here as V; and V5. Thus, it is possible to formulate an
equation system based on equation (3.21)

1% (v
KZ'(1+1) +K1:b7
Vi
(3.22)
(%)KEXP_I
V; V
KZ'(2+1) +K1:b7
Vi

Vs

Asolution to the equation system (3.22) is (3.23). The third parameter Kp can be calculated
using (3.24) from the values of K and K.

()
Vi
V
1 —1 71_1
K _ v : Y (3.23)
TV, —V Va Vi Kgp ’
K| ViV | S 2 L] (v e
v, Vs = —1
Vi
2y
A |
Kp=1—K;—K; (3.24)

Equations (3.23) and (3.24) can also be written as equation system (3.25).
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Vl KExp l V2 KE.\'p 1

K, — Vh Vh _ Vb

7T Vi—V2 i 1 Va_

Vi Vi
(vl Kew X vy \ e | (3.25)
Vi V2 7 Vi 7

K= . —_=_1).xz 000 I T IO N,

! Vi—W, ( Vi ) E,l * Vb+ E,l

Vi Vi

Kp=1—K;—K;

Figure 3.6 indicates that the derived analytical method AM3 provides the lowest con-
version error at voltage V|, base voltage and at voltage V5. At these voltages, the conver-
sion error is zero. This is an expected result taking into account the assumptions of the
derivation (3 intersections of characteristics, at Vi, V}, and V»).

0.15

0.10 |

0.05
‘I“ ”I”|ll-'ll I

-0.05

-0.10

Conversion Error € (p.u.)

-0.15

-0.20 . . . . . . . )
0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2

Voltage V, (p.u.)

Figure 3.6: Voltage dependence of conversion error of AM3, when 0.8 and 1.2 p.u. are used as Vi /Vj,
and VQ/V},.

An interesting result is the NMAE of the method AMS illustrated by Figure 3.7. The
conversion error of the method is significantly lower than the error of analytical method
AM2 (both the constrained and unconstrained version). At exponent Kg,, values from 0.5
to 2.5 the error is comparable to the non-linear least squares methods.
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Figure 3.7: NMAE of developed analytical methods compared to non-linear least squares conversions
(NLSrel, NLSabs).

3.5 Analytical Method for ZIP to Exponential Model Conversion

For converting ZIP models to exponential models, there is a well-known equation (3.26),
which has been used in [18, 53, 60]. Based on the following derivation, the equation will
work with both non-normalised and normalised ZIP model parameters.'® The origin of
this method is unclear.

2-Kz+1-Kj+0-Kp

(3.26)
Kz + K;+Kp

KExp ~

Probably the method has been derived based on the approximate derivatives of expo-
nential and ZIP load model equation. An explanation of one way to derive this equation
will now follow.

We assume the exponential model to have equation (3.27)"” and ZIP model to have
equation (3.28)'"8. Here P, - Kz, P, - K; and P, - Kp represent non-normalised ZIP model
parameters, and are similar to Y Pload, IPload and Pload of PSS®E load model presented
in Section 1.2.3 and described by (1.7).

V KExp
Pexp=P,- (Vb) (3.27)

6Non-normalised parameters are used in PSS®E load model presented in Section 1.2.3 and de-
scribed by (1.7), and could be represented by P, - Kz, P, - K; and P, - Kp. Normalised parameters
correspond to the parameters defined in case of (1.3) in Section 1.2.3, where the multiplier P, was
in front of the brackets. In the case of non-normalised parameters, the sum of parameters corre-
sponds to the load at base voltage V},. The sum of normalised parameters is 1 and they describe the
fraction of P,.

7Corresponds to (1.1) presented in Section 1.2.2.

8Combination of (1.7) and (1.3) that were presented in Section 1.2.3.
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V2 14
Pyp=P,-K;- | — +P,-Ki- | | +B-Kp (3'28)
Vi Vi

The partial derivatives of these equations with respect to voltage are:

Py AN

TEP  _poKp, [ — 3.29

oV vy — PTEw <Vb) (3:29)
%—P 2k, (V) 4B K 40P, K (3.30)
B(V/Vb)_ b Z Vb b 1 b P .

Vv
When the voltage is assumed to be <V> =~ 1, the partial derivatives can be approxi-
b
mated by (3.31) and (3.32).

aPExp

—Lt _~pP K 3.31

8(V/Vb) b BExp ( )
oPzp
———=P,-2-K;+P,-K;+0-P,- K 3.32
3(V/V/,) b z+ P, K+ b Kp ( )

Setting these two approximately equal, and knowing that P, - K;+ P, - K; + P, - Kp = P,
because K; + K; + Kp = 1.

Pb-KExp%Pb~2'Kz+Pb-K1+O-Pb-KP (3.33)

P,-2-Kz+P,-Kj+0-PB,-Kp  P,-2-Kz+PB,-K;+0-P,-Kp

— (3.34)
P, P,-K;+P,-Ki+ P, -Kp

KExp =

This last equation matches (3.26) if P, - Kz, P, - K; and P, - Kp were to be denoted
by K7, K;, Kp. Here the multiplications are used to more clearly express the relation

of this equation to non-normalised and normalised ZIP model parameter values. In the
case of normalised parameters, base powers P, would cancel out and simply equation
Kgyp~ 2 - K7+ Kjcan be used for conducting the conversion.

3.6 Conversion of Estimated Models and Impact on Event Modelling
Error

In Section 2.4.4 a case study, where six voltage disturbances were induced by OLTC switch-
ing, was introduced. The study was conducted in a network with high penetration of DG.
For each event two exponential and two ZIP load models were estimated. The load mod-
els fitted to the responses of the supplied load were presented in Table 2.12. Denotations
Kgxp.1, Kz 1, Krr and Kp; were used for the load model parameters. The models corre-
sponding to the responses of the apparent transformer load were presented in Table 2.13.
These values were denoted by Kgy, 7, Kz 7, K; 7 and Kpr. The load models of Table 2.12
and Table 2.13 were converted by least squares estimation (denoted by NLSa, described in
Section 3.3), analytical method presented in Section 3.4.1 (denoted by AM1, used for ex-
ponential to ZIP conversion) and analytical method from Section 3.5 (denoted AM, used
for ZIP to exponential conversion).
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The estimated and converted exponential models are presented in Table 3.2 for com-
parison. This table indicates that there is a significant mismatch between the estimated
and converted models. Furthermore, results of the conversion methods differ as well.
In the case study the voltages were in the range 0.95...1.05 p.u.. Thus, the estimated
ZIP model (that was converted to exponential model) and estimated exponential model
should be most accurate in that voltage range. The analytical method AM was derived
by using the derivatives of exponential and ZIP model. Furthermore, the voltage was as-
sumed to be equal to the base voltage V},. Thus, the model converted by analytical method
AM should have the highest accuracy near the base voltage V},, corresponding to the pre-
event voltage of each event in this study. Furthermore, the least squares method was
applied for model conversion by using the same voltage range (0.8...1.2 p.u.) as is used in
therest of the thesis. In addition to the voltage range difference, in estimation and conver-
sion process the voltage value distribution differs as well: it is even in conversion and not
even in measurement data. These differences cause the least squares to find significantly
different results in estimation and conversion situation.

Table 3.2: Estimated exponential load model and exponential models acquired by conversion of esti-

mated ZIP models. Kgyp 1. - exponent for total supplied load. Kgyp 1 - exponent for apparent trans-
former load.

Estimated Converted by AM  Converted by NLSa

Event KExp,L KExp,T KExp,L KExp,T KExp,L KExp,T
1 0.74 51 0.73 5.21 0.73 4.65

2 1.24 2.92 1.01 2.62 0.92 2.21

3 0.79 8.1 0.65 9.28 0.66 6.22

4 0.62 1.30 0.98 1.66 114 2.01

5 0.65 7.64 0.60 8.70 0.60 6.11

6 1.03 8.15 1.06 7.78 1.09 6.04

In Table 3.2 the estimated and converted exponential load models differ significantly.
In order to determine how well they describe the measured load responses, simulated
load was calculated based on measured voltage and compared to the measured load.
The obtained simulation error is presented in Table 3.3 and Table 3.4. Based on these
tables, the modelling accuracy of the estimated and converted models is mostly similar.
The models acquired by the least squares conversion tend to be least accurate.

Table 3.3: Event modelling error. Total supplied load. Estimated exponential load model and expo-
nential models acquired by conversion of estimated ZIP models.

Estimated Converted by AM  Converted by NLSa
MSE  MAE MSE MAE MSE MAE

Event (-1073) (-1073) (-1073)
1 017 0.01 0.17 0.01 0.17 0.0M
0.10 0.008 0.1 0.009 0.1 0.008
0.14 0.009 0.15 0.009 0.17 0.010
0.10 0.008 0.17 0.01 0.10 0.008

0.08 0.008 0.08 0.008 0.08 0.008
0.05 0.006 0.05 0.006 0.05 0.006

oA WN
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In the case study (introduced in Section 2.4.4) the ZIP models were less accurate than
exponential models at describing the load behaviour. Surprisingly, when the estimated ZIP
models were converted to exponential models, in several cases, the accuracy improved.
For example in Table 3.4 the 2" and the 3 event.

Table 3.4: Event modelling error. Apparent load of the transformer. Estimated exponential load
model and exponential models acquired by conversion of estimated ZIP models.

Estimated Converted by AM  Converted by NLSa
MSE  MAE MSE MAE MSE MAE
Event (-1077) (-1073) (-1073)

1 18.55 0.105 18.55 0.105 18.81 0.108
2 1.94 0.034 1.96 0.035 2.46 0.037
3 14.23 0.093 15.25 0.096 16.91 0.100
4 1.34 0.030 1.41 0.031 1.35 0.030
5 10.61 0.084 11.51 0.087 15.32 0.102
6 3.46 0.046 3.47 0.046 3.77 0.048

The estimated and converted ZIP models are presented in Table 3.5. Similarly to the
previously described exponential models, the converted ZIP models differ from the esti-
mated ZIP models. Still, in the case of supplied load models (with index L), the converted
models have some similarity in values. Analytical method AM1 leads to constrained ZIP
models. The models provided by the least squares fitting can be considered to be close
to constrained model in the case of supplied load, compared to the models of apparent
transformer load.

Table 3.5: Estimated ZIP load model and ZIP models acquired by conversion of estimated exponential
models.

Estimated Converted by AM1  Converted by NLSa

Event K7, Kip. Kepr Kzp K Kpp Kz1 Kip Kpp
0.38 -0.02 0.65 0.00 1.00 0.00 -0.10 0.93 0.16
-8.32 17.66 -8.33 0.24 0.76 0.00 0.15 0.94 -0.09
4.71 -8.77 5.06 0.00 1.00 0.00 -0.08 0.96 0.13
10.49 -20.00 10.51 0.00 1.00 0.00 -0.12 0.86 0.26
1.32  -2.05 1.73 0.00 1.00 0.00 -0 0.88 0.24
6 2.07 -3.09 2.02 0.03 0.97 0.00 0.01 1.00 -0.01
Event Kz 7 Kir Kpr Kzr Kiv Kpr Kzr  Kir  Kpr
1 431 -340 0.09 1.00 0.00 0.00 10.64 -15.92 6.28
-8.69 20.00 -10.31 1.00 0.00 0.00 281 -2.68 0.87
-5.36 20.00 -13.64 1.00 0.00 0.00 30.96 -52.37 22.40
10.83 -20.00 10.17 0.30 0.70 0.00 0.20 0.90 -0.10
-2.46 13.61 -10.15 1.00 0.00 0.00 26.94 -45.06 1943
4.61 -1.44 -217 1.00 0.00 0.00 31.35 -53.07 22.72

N

au h W N

o N
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The event modelling error of ZIP models (of Table 3.5) is displayed in Table 3.6 and
Table 3.7. According to the tables, the least accurate are the estimated ZIP models. This
indicates that the implemented ZIP model estimation algorithm may be unable to find
the best solution, and could be improved further. The most accurate are the ZIP models
obtained by least squares conversion of exponential models.

Table 3.6: Event modelling error. Total supplied load. Estimated ZIP load model and ZIP models
acquired by conversion of estimated exponential models.

Estimated Converted by AM  Converted by NLSa

MSE  MAE MSE MAE MSE MAE
Event (-1073) (-1073) (-1073)

1 0.19 0.010 0.18 0.01 0.17 0.011
2 32.43 0.122 010  0.008 0.10 0.008
3 7.85 0.074 016  0.010 0.14 0.009
4 40.50 0.170 0.18 0.01 0.10 0.008
5 0.30 0.014 014  0.009 0.08 0.008
6 017 0.01 0.05  0.006 0.05 0.006

Table 3.7: Event modelling error. Apparent load of the transformer. Estimated ZIP load model and
ZIP models acquired by conversion of estimated exponential models.

Estimated Converted by AM  Converted by NLSa
MSE  MAE MSE MAE MSE MAE
Event (-1077) (-107%) (-1073)

1 18.65 0.105 20.1 0.110 18.56 0.106
2 48.16 0.155 216 0.037 1.94 0.034
3 100.26 0.257 36.04 0.149 15.01 0.096
4 37.60 0.161 1.34 0.030 1.34 0.030
5 66.69 0.202 30.89 0.139 11.23 0.086
6 4.71 0.053 7.39 0.067 3.70 0.048

3.7 Impact of Conversion Error on Load Flow Results

3.7.1 Conversion Error and Load Modelling Error

In Section 3.2 the load model conversion error was defined by the difference of load char-
acteristics at a specific voltage. That approach is useful when the load bus voltage is not
affected by the load characteristic or the impact of the load characteristic replacement is
negligible. In that case, the load model conversion error matches the load modelling error
in load flow, as shown in Figure 3.8.

Actually, the load bus voltage is also dependent on the power consumption of the
load. This means that converting and replacing a load characteristic in a power system
model can lead to a different load operation point. In the load flow results both load bus
voltage and consumed power would differ compared to the original results. This situation
is illustrated by Figure 3.9, where the load model conversion error and load flow error
differ significantly. Moreover, as the load operates at two different voltages (V; and V),
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Figure 3.8: Conversion error and load modelling error in load flow results when the load bus voltage
is not affected by the load characteristic. With an accurate load model the load operates at voltage
V| and consumes P;. With converted load model the load operates at voltage V| and consumes P x.
Adapted from [VI]

the related load model conversion error can be calculated at 2 different voltages, and
different values would be obtained. Neither would match with the load modelling error
in load flow. To illustrate the described situation, a conducted case study is described and
analysed from Section 3.7.2.
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Figure 3.9: Conversion error and load modelling error in load flow when change of load characteris-
tics causes the load bus voltage to change. With an accurate load model the load operates at voltage
V| and consumes P;. With converted load model the load operates at voltage V, and consumes P, x.
Adapted from [VI]
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3.7.2 Case Study: Impact of Conversion Error on Load Flow Results

In the case of conversion between exponential and ZIP load model, typically, a conversion
error is involved. The aim of the case study is to analyse how conversion error affects
the results of load flow calculations. To achieve this goal, load flow is calculated for the
same Nine-bus power system model using different load models. The analysed cases are
listed in Table 3.8. For conducting the calculations, DIgSILENT Power Factory was used.
This software was chosen because the polynomial load model of DIgSILENT Power Fac-
tory (described in detail in Section 1.2.4) can accurately model exponential and ZIP load
models'.

Bus 2 Bus 7 Bus 8 Bus 9 Bus 3
o | oo
G2 I I_l I G3

Bus 5 - Load C - Bus 6

Load A Load B

Bus 4 Busl @G1

Figure 3.10: Nine-bus power system. Adapted from [VI]

Simulated Cases
Firstly, Case 1 (in Table 3.8) was calculated to verify if the load flow results of the Nine-bus
power system model correspond to the documentation of DIgSILENT Power Factory [118]
and the source of the model [119]. The load flow results matched the documentation.
After the validation of the Nine-bus model (Case 1), the voltages of the generators were
increased to increase load bus voltages for amplifying the effect of the load modelling
error, while still keeping the system at a realistic voltage. This was done in Case 2, where
original constant power load models were used. After the modifications, the generator
bus voltages increased from 1.025...1.040 p.u. to 1.088...1.090 p.u. This was achieved
by increasing the slack generator (G1) voltage reference from 1.040 to 1.090 p.u. and
adjusting the reactive power references of generators G2 and G3. Generators G1 and G2
operate in the model at a fixed active and reactive power output. The same generator
modelling approach is used in all the cases (Case 1to 8). The load bus voltages increased
as a result from 0.996...1.016 p.u. to 1.061...1.084 p.u. (loads modelled by constant power
loads in Case 2).

Chosen Load Models and Converted Load Models

Exponential load models were chosen and implemented in Case 3 to analyse the impact
of exponential to ZIP load model conversion error. For choosing the models, the results
of an international survey [60] were used. Load B was assigned the mean value of the
World (Table VI and Table VIl in [60]). Load A models were assigned the highest values
of the World load model range (Table VI and VIII in [60]). Load C was assigned negative
values that have equal absolute value as highest exponents of Load A and B. The chosen
exponential models (Table 3.10) were assumed to be accurate voltage characteristics when
analysing the results of Case 4 and Case 5, where ZIP models were used that were acquired
by converting the exponential models chosen for Case 3.

19Section 1.2.4 describes how this can be achieved.
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Table 3.8: Cases modelled for case studly.

Case Generator Load Models Comment

References
1 Original Constant Loads without voltage dependence
power
2 Modified* Constant Loads without voltage dependence
power
Modified* Exponential Chosen exponential models
Modified* ZIP Exponential models** converted by the most
accurate method
5 Modified* ZIP Exponential models** converted by the least
accurate method
Modified* ZIP Chosen ZIP load models
Modified* Exponential ZIP models*** converted by the most accu-
rate method
8 Modified* Exponential ZIP models*** converted by the least accu-

rate method

* Generator reference values were increased to increase the voltages of the generator buses to
raise the voltage in the modelled system.

** Input load models (exponential) are the same as used in Case 3.

*** Input load models (ZIP) are the same as used in Case 6.

Table 3.9: Load and generator voltages and powers in the original Nine-bus system model, and after
increasing generator bus voltages (after modification).

Original Nine-bus Model After Modification
Bus P[MW] Q[Mvar] V[p.u.] P[MW] Q[Mvar] V[p.u.]
G1 1 71.60 26.78 1.040 71.06 12.32 1.090
Generators G2 2 163.00 6.70 1.025 163.00 1.00 1.088
G3 3 85.00 -10.90 1.025 85.00 -15.00 1.089
A 5 125.00 50.00 0.996 125.00 50.00 1.061
Loads B 6 90.00 30.00 1.013 90.00 30.00 1.077
c 8 100.00 35.00 1.016 100.00 35.00 1.084

Another set of load models was chosen for Case 6, a set of ZIP models (Table 3.10)
that was used for analysing the impact of ZIP to exponential load model conversion error
on load flow results. The ZIP models were chosen with voltage sensitivities comparable
to the models presented in [61] and high conversion error. The chosen ZIP load models
(used in Case 6) were assumed to be accurate voltage characteristics when analysing the
results of Case 7 and 8. The load models of Case 7 and 8 were acquired by converting the
ZIP models chosen for Case 6.
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Table 3.10: Chosen exponential and ZIP load models. [VI]

Exponential ZIP
Load Kgyp Kepo Kzp Kip Kp Kzp Kio Ko
A 1.33 2.47 5.68 -9.89 521 -577 9.86 -3.09
B 0.67 1.35 -470  9.49 -3.79 -11.39 24.48 -12.09
C -1.35 -2.47 -418 9.98 -480 -566 8.93 -2.27

The chosen exponential load models were converted to ZIP models using the con-
version methods presented in Section 3.3 and 3.4. The NMAE of the conversions (Table
3.11) indicates that analytical method AM1 provided the lowest accuracy (highest values
of NMAE) and the highest accuracy (lowest values of NMAE) was provided by NLS minimi-
sation of relative error (NLSrel). These results correspond well to Figure 3.7.

Table 3.11: NMAE when chosen exponential models converted to ZIP models. [VI]

AM1 AM2 AM3 NLSrel
Load P Q P Q P Q P Q
A 0.16% 4.88%  0.16% 0.51%  0.01% 0.06% 0.01% 0.03%
B 3.39% 0.16% 0.16% 0.16%  0.01% 0.01% 0.01% 0.01%
c 13.82% 25.36%  2.22% 6.03%  0.36% 1.34% 0.20% 0.71%

The most accurate converted model (converted by NLSrel) was used in Case 4, and the
least accurate model (converted by AM1) in Case 5.

Table 3.12: Chosen exponential load models and ZIP models acquired by model conversion (using

method AM1 and NLSrel). [VI]

Conversion ZIP Model of P ZIP Model of Q
method Load Kzp Kip Kp K70 Kio Ko
0.33 0.67 0.00 .00 0.00 0.00
AM1 B 0.00 1.00 0.00 0.35 0.65 0.00
C 0.00 0.00 100 0.00 0.00 100
A 0.22 0.89 -0M 1.81 -114 0.33
NLSrel B -0.11  0.89 0.22 0.24 0.87 -0OMm
C 1.62 -4.63 4.01 437 -1.37 799

Similarly, the chosen ZIP models were converted to exponential models by the con-
version methods presented in Section 3.3 and Section 3.5. The conversion error of the
two methods was similar to that shown by Table 3.13. The acquired load models shown in
Table 3.14 were used in Case 7 and 8.
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Table 3.13: NMAE when chosen ZIP models converted to exponential models using analytical method
(AM) and NLSrel. [VI]

AM NLSrel
Load P Q P Q
A 6.82% 14.82% 6.72% 14.99%
B 7.43%  30.94% 7.38%  29.16%
C 8.07% 20.28% 7.87% 20.56%

Table 3.14: Converted exponential models from AM and NLSrel. [VI]

AM NLSrel
Load Kgyy Keypo Kexp  Kexpo
A 1.48 -1.69 1.25 -1.99
B 0.09 1.69 0.15 2.94
C 1.61 -2.39 1.91 -3.00

3.7.3 Case Study Results: Impact of Exponential to ZIP Load Model Conversion on Load
Flow

Simulation Case 3 was calculated using the chosen exponential model presented in Table
3.10. The results of that case are considered to be accurate in the context of this anal-
ysis. Next, Case 4 and Case 5 were calculated with load models that were acquired by
converting the chosen exponential models to ZIP models. Case 4 used the most accu-
rate converted models (converted by NLSrel). In contrast, Case 5 used the least accurate
models (converted by AM1). The used ZIP model parameter values are presented in Table
3.12.

Replacement of the load models had an effect on the load flow results, as can be seen
in Table 3.15. The less accurate ZIP models (converted by AM1) increased the power output
of the slack generator (G1) significantly, active power output increased by 14% and reactive
power 51%. A large change of Load C was observed, active power increased by 12% and
reactive power 23%. The load changes decreased voltages in the system (bus voltages
decreased 1...2%). This can create a false sense of security: modelled voltages are lower,
thus the margin in respect to upper voltage limit is increased. The more accurate NLSrel
conversion led to almost no change of active power output of slack generator (G1) and a
3% decrease in reactive power. Bus voltages of the system increased up to 0.1%, which is
a small change compared to the system modelled with load models from AM1.

The conversion error was defined for a specific voltage. In the case of the conducted
simulations, there are several voltages which occur: voltages of the simulation with the
exponential load models (Case 3) and voltages of the simulations with the converted load
models (Case 4 and 5). This means that the load model conversion error depends on the
voltage chosen for the analysis. Table 3.16 illustrates this situation. The load modelling
error in load flow is in column V. The conversion error at Case 3 (chosen exponential
models) voltagesis in columns Vi, and the conversion error at Case 4 and Case 5 voltages
is shown in column Viyyg,.; and Vs, respectively.
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Table 3.15: Relative error 1 of simulation with ZIP models acquired by using conversion methods
AM1 and NLSrel. [VI]

Conv. Voltage Voltage

Meth. Bus Magn. Angle PGen. QGen. Pload QLload
1 - - 14.35% 50.57% - -
2 -1.68% -6.70%  0.00% 0.00% - -

AMI 3 -1.61% -15.89% 0.00% 0.00% - -
5 -0.76% 13.46% - - -0.99% -3.90%
6 -0.87% 16.67% - - 1.44% -1.12%
8 -1.97% -100.00% - - 12.07% 23.20%
1 - - -0.30% -2.62% - -
2 0.09% 0.00% 0.00% 0.00% - -

NLSrel 3 0.00% 0.23% 0.00% 0.00% - -

re

5 0.04% -0.26% - - 0.05% 0.14%
6 0.04% -0.58% - - 0.03% 0.06%
8 0.10% 2.97% - - -0.37% -1.16%

In the case of NLSrel converted load models, the Vg, and Vzp values are approxi-
mately equal. This is explained by the nearly unchanged bus voltages (magnitudes of load
bus voltages changed up to 0.04...0.1%). In this case the load flow error is on a similar
scale to the conversion error. The AM1 case is more interesting. Load C displays an equal
error in Vg,, and Vr columns. This is caused by the model used - load is modelled by a
constant power model (because the constrained ZIP model is not able to model negative
voltage dependencies more accurately). For columns Vg, and V7 the chosen exponen-
tial load model is calculated at voltage Vg,,, and the AM1 converted load model consumes
nominal power. However, for column Vz;p the exponential model is calculated at voltage
Vzip, while the AM1 converted model still consumes nominal power, leading to a different
calculated error value.

3.7.4 Case Study Results: Impact of ZIP to Exponential Load Model Conversion on Load
Flow

Simulation Case 6 was calculated using the chosen ZIP model presented in Table 3.10. The
results of Case 6 are considered to be accurate in the context of this analysis. Next, Case 7
and Case 8 were calculated with load models that were acquired by converting the chosen
ZIP models to exponential models. Case 7 used the non-linear least squares conversion
(NLSrel). Case 8 used the analytical method (AM). As previously stated, the load model
conversion error of the methods was similar (shown in Table 3.13). The parameter values
for the exponential model used are presented in Table 3.14.

Compared to the exponential to ZIP load model conversion cases, significantly larger
load flow changes were observed. The slack generator active power output decreased by
several per cent (2...4%) and reactive power output changed the direction and decreased
10..20 times. Active power change was larger using the AM converted load models, and
reactive power change for the NLSrel converted models. The load bus voltages decreased
by 2.2...3.5%. This is a significant change of voltages, and if the ZIP models used were
accurate, such a decrease in calculated voltages could lead to a false sense of security.
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Table 3.16: Relative conversion error n of AM1and NLSrel converted models at different voltages.

vi]

AM1 Load Model NLSrel Load Model
Load P/Q Vexp Vam %73 Vexp  VaLsrel ViF
A P 0.03% 0.02% -0.99% 0.00% 0.00% 0.05%
Q -2.43% -2.08% -3.90% 0.03% 0.03% 0.12%
B P 2.34% 2.04% 1.45% -0.10% -0.10% -0.07%
Q 0.06% 0.04% -1.13% 0.09% 0.09% 0.16%
c P 12.07% 9M% 12.07% -0.27% -0.27% -0.41%
Q 23.19% 17.29% 23.19% -1.06%  -1.07% -1.31%

Voltages based on:

VExp - load flow with exponential models;

Vami - load flow with ZIP models from AM1;
Vinisrer - l0ad flow with ZIP models from NLSrel;

ViF - load flow corresponding to model.

Table 3.17: Relative error 1 of simulation with exponential models acquired by using analytical con-
version (AM) and method NLSrel. [VI]

Conv. Voltage Voltage
Meth. Bus Magn. Angle P Gen. QGen. Pload QLload

1 - - -372% -105.02% - -
2 -3.20% 19.51%  0.00% 0.00% - -
AM 3 -319%  40.34% 0.00% 0.00% - -
5 -2.23%  -6.49% - - -7.39% 13.90%
6 -2.23% 1.53% - - 5.60% 9.21%
8 -3.51% -12.00% - - 205% 4521%
1 - - -2.06% -108.23% - -
2 -312%  13.97% 0.00% 0.00% - -
NLSrel 3 -3.19% 21.01% 0.00% 0.00% - -
re
5 -216%  -5.44% - - -8.81% 1.31%
6 -2.45% 3.94% - - 6.08% 20.03%
8 -3.47% 0.40% - - 515% 36.68%

The conversion error describes the mismatch of load characteristics at a specific volt-
age. In simulation Case 7 and Case 8, the load bus voltages changed significantly (de-
creased 2.2...3.5%) due to the load model replacement.?° In these simulations, several

20The chosen ZIP load models (used in Case 6) were replaced by exponential models acquired by
conversion (in Case 7 and Case 8).
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voltage values occur for the loads: voltages of the simulation with the chosen ZIP load
models (Case 6) and voltages of the simulations with the converted load models (Case 7
and Case 8). Table 3.18 displays the load model errors for different voltages. The load mod-
elling error in load flow is shown in columns V; . The conversion error at Case 6 (chosen
ZIP models) voltages is shown in columns Vz;p. The conversion error at Case 7 and Case
8 voltages is shown in column Vi s,.; and Vayy, respectively. The table indicates that the
larger conversion errors (NMAE was in Table 3.13 in the range 7...31%) led to load and bus
voltage changes. Even if the buses would have been directly supplied from a slack bus (or
generators with fixed voltage), and the load bus voltage remained unchanged, the active
loads would have been misrepresented by 2...12% and reactive loads by 7...33% (indicated
by Vzip column of the table). Thus, the load model conversion error in the model con-
version stage can translate into large changes in load flow calculations and methods with
higher accuracy should be preferred.

Table 3.18: Relative conversion error 1 of AM and NLSrel converted models at different voltages. [VI]

AM Load Model NLSrel Load Model
Load P/Q Vzip Vam Vir Vzip  VNLSrel Vir
A P -4.27%  -2.53% -7.41% -6.29% -416%  -8.81%
Q 9.63% 5.03% 13.89% 6.60% 2.92% 11.33%
B P 5.77% 3.36% 5.56% 6.46% 3.68% 6.07%
Q 13.47% 7.94% 9.22% 29.20% 18.63% 20.10%
c P 8.14%  4.26% 2.07% 12.48% 7.36% 5.13%

Q 33.30% 13.68% 45.21% 23.03%  7.32% 36.78%

Voltages based on:

Vz1p - load flow with chosen ZIP models;

Vam - load flow with exponential models from AM;

Vi Lsrel - l0ad flow with exponential models from NLSrel;

ViF - load flow corresponding to model.

3.8 Conclusion and Discussion

The load model conversion error (defined in Section 3.2) describes the mismatch between
the original and converted load model. The values of the error were analysed by using nu-
merical analysis in publications [1], [II] and [VI]. In Section 3.4, load model conversion error
analysis results were used for developing new conversion methods that were presented in
publication [I] and [VI]. The new exponential to ZIP model conversion methods displayed
higher accuracy than the known method. There might exist other, better, methods for
conducting the conversions. The same measures of error and similar numerical analysis
can be applied for benchmarking new methods against the methods presented in this dis-
sertation. Thus, one value of the conducted work is also the establishment of an approach
usable for benchmarking (static) load model conversion methods.

In Section 3.6 load models estimated in Section 2.4.4 were converted (ZIP models to
exponential, exponential models to ZIP), and compared to the corresponding estimated
models. It was found that the estimated and converted models typically differ. When
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the estimated and converted models were used for simulating the load responses of the
case study, the simulation errors (MAE and MSE) were with comparable magnitude. The
simulation was conducted by using a simple mathematical model and all the network in-
teractions were neglected (for example load had no impact on voltage).

When load flow calculations are conducted, the conversion error describes only one
part of the error caused by the mismatch of the load characteristics. Additionally, the load
model error also causes a shift in the state of the modelled system. This leads to voltage
changes in the system that, depending on the situation, can amplify or dampen the effect
of the conversion error. This was discussed in Section 3.7.1 and illustrated by a case study
in Section 3.7.2, Section 3.7.3 and Section 3.7.4. The case study was first presented in
publication [VI]. In the case study, significant changes of system state were observed in the
case of load model replacement by converted load models. In several cases, compared
to the original model (assumed to be accurate) the bus voltages of the system decreased,
which might cause false sense of security. The voltages calculated to be within allowable
limits using converted load models could give a false indication of the allowable mode
of operation. With accurate models the simulation would indicate a voltage issue and a
different mode of operation could be chosen. The conducted simulations indicated that
the conversion error is an enabler of load flow error, but the values are not an exact match.
In future research it may be possible to analyse how the values of the two are related one
to another in greater detail.
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4 Conclusions and Further Work

4.1 Conclusions

The first objective of this thesis was to develop a methodology for estimating static load
models of aggregated transmission system bus loads based on the available measurement
data. The available measurement data from the Estonian transmission system was used
for testing the methodology. The usability of existing measurement systems from the
static load model estimation aspect was analysed. The placement of phasor measurement
units and power quality monitors was found to be unsuitable for load modelling (at the
time of the analysis). The digital fault recorder (DFR) system was found to cover most of
the aggregated transmission system loads. In addition, several years of historical data was
found to be available for the DFRs. For this reason the DFR data was chosen for processing.

In order to decrease the number of type models and assign models for unmeasured
loads, K-means clustering was implemented for grouping loads into type groups. In the
literature load composition at the time of peak loads or the load profiles has been used
for clustering. These types of data was not available for the system, and for this reason
clustering was implemented based on the monthly load class composition. The 92 sub-
stations with the largest loads were clustered into 10 groups with silhouette coefficient
indicating a reasonable structure. Due to the insufficient amount of measurement data
with high certainty, it was not possible to validate the grouping results in respect to load
modelling.

The developed load modelling methodology includes event filtering based on the key
indicators of recorded events, and post-processing acquired values using the proposed
method of error weighted averaging. The event filtering was implemented because the
DFR measurements are event based (measurement started by triggering conditions and
ended based on a timer), and most of the events were hypothesised to be unsuitable for
load model estimation. The analysis of event filtering results indicated that only a negligi-
ble number of events recorded by the DFRs comply with the suitable event requirements
(presented in literature). The event filtering was shown to decrease the standard deviation
of estimated active load model values (indicating an increase in model precision). Even
after the filtering, the standard deviation of the estimated values indicated low precision
of estimated values.

The impact of measurement time, weather and penetration of DG (within aggregated
load) was illustrated based on the case studies. During the nighttime the voltage sensitiv-
ity of the active loads was found to be lowest, and was highest during the evenings. On
a colder day, the sensitivity was higher, possibly due to the heating loads. The DG was
shown to increase the voltage sensitivity of the aggregated loads. Finally, a method for
post-processing a set of estimated load models was presented and analysed. The method
was found to be less sensitive to event filtering than the commonly used averaging of val-
ues. This could indicate a higher robustness (smaller sensitivity to outliers). However, for
conclusive results, a more detailed analysis is needed.

The second objective of this thesis was to benchmark static load model conversion
methods (ZIP to exponential, and exponential to ZIP load model conversion) to assess the
accuracy of the methods. Firstly, measures of conversion error were defined for com-
paring different methods using numerical analysis. Derivation of several new methods
was explained. The conversion error of the methods was compared to the known and
benchmark methods (NLS minimisation of error). A similar benchmarking approach can
be applied for assessing the accuracy of methods emerging in the future. The new ex-
ponential to ZIP model conversion methods displayed higher accuracy than the known
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method and comparable error to NLS minimisation of conversion error. The difference
and relation between conversion error and load modelling error in load flow calculations
was discussed and illustrated by a case study. In the case study the selection of exponen-
tial to ZIP load model conversion method was shown to have a significant impact on the
load flow results. In the case of ZIP to exponential load model conversion the load flow
differences were larger and similar to both methods.
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4.2 Further Work

The measurement systems evolve in time. Thus, after some years it would be reasonable
to once again analyse the availability of measurement data in the Estonian transmission
system. In addition to assessing the measurement systems and making use of the new
available data, it would be reasonable to validate and renew the load models periodi-
cally. The devices connected to the power system are slowly replaced by devices based
on newer technologies (e.g. incandescent lights replaced by LEDs, newer home appliances
using variable speed drives instead of direct drives), which slowly change the aggregated
load responses to disturbances.

Furthermore, the estimated static load models of the aggregated transmission system
bus loads could be used for assessing the conservation voltage reduction potential of the
Estonian power system. This assessment was, however, not in the scope of this thesis. The
first reason for not assessing the CVR potential in this thesis is related to the numerical re-
sults: it was not possible to determine all the bus load models with sufficient confidence.
A measurement campaign would need to be organised to validate and improve the clus-
tering results and estimated models of the loads. In the conducted research project the
resources were sufficient for conducting a few pilot studies, but not for a full scale mea-
surement campaign. Secondly, the voltage drop on lower voltage levels would need to be
analysed in order to determine how low voltage can be applied without automatic voltage
regulation interfering and customer voltages remaining at acceptable level.

A method for post-processing the estimated load model values was presented in Chap-
ter 2. Several ways for implementing the method were presented. However, due to the
limited amount of measurement data available, it was difficult to assess which implemen-
tation provides the highest load model estimation accuracy and precision. This evaluation
could be conducted in the future based on measurement data that enables precise esti-
mation of correct load model.

Numerous methods were presented in Chapter 3 for converting load models. It should
be possible to develop methods for handling other load models and to use a similar con-
version error analysis for mapping the conversion error of these methods. Also, there
might exist some other more accurate ways for conducting these ZIP to exponential and
exponential to ZIP load model conversions.

The case study presented in Chapter 3 indicated that replacing load models in load flow
by converted load models can cause significant voltage changes. Additional modelling
studies can be conducted to analyse in more detail the interaction between the system
and load modelling error. Studies of real power systems with validated load models should
be analysed in order to properly assess if the models chosen for the illustrative study
were realistic or if in a real power system model the load models are more suitable for
conversion (lower conversion errors occur and the load flow results are less affected).
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Abstract
Estimation and Conversion of Static Load Models of Aggre-
gated Transmission System Loads

The load composition and behaviour of the devices connected to the power system
changes in time. This leads to a need for renewing the load models used for modelling the
behaviour of the system. Additionally, the increasing amount of renewable generation is
pushing the power systems closer to their limits. In order to utilise the existing system as
close to the limits as possible, while sustaining safe and reliable operation, accurate mod-
elling of the system (including load modelling) is vital. However, the load is dependent
on weather, the habits of consumers, and inhibits stochastic changes. This means the
load models estimated for one power system may not be suitable for modelling another
system. Currently preparations are underway to desynchronise the Estonian and Baltic
power system from the IPS/UPS system and synchronise to the Continental Synchronous
Area in 2025. In order to accurately model the system, the load models of the system
were taken under review in research project "Static and dynamic characteristics of loads
of Estonian electrical transmission network". This project was conducted at Tallinn
University of Technology for the Estonian transmission system operator Elering AS. This
thesis was started as a part of the project. Among other tasks of the project, a combined
load modelling methodology needed to be developed and implemented to take use of
the existing measurement data and systems.

The first objective of this thesis was to develop a methodology for estimating static
load models of aggregated transmission system bus loads based on the available mea-
surement data. The developed load modelling methodology combines the K-means clus-
tering of loads (based on monthly load class composition), event filtering based on the
key indicators of the recorded event, and post-processing acquired values using the pro-
posed method of error weighted averaging. This combination of data processing methods
is a novel approach for load model estimation. The usability of existing measurement sys-
tems from the static load model estimation aspect was analysed. The placement of phasor
measurement units and power quality monitors was found to be unsuitable for load mod-
elling (at the time of the analysis). The digital fault recorder (DFR) system was found to
cover most of the aggregated transmission system loads. In addition, several years of his-
torical data were found to be available for the DFRs. A data processing methodology was
developed and implemented for processing the historical data of the DFRs. In order to de-
crease the number of type models and assign models for unmeasured loads, the K-means
clustering was implemented for grouping loads into type groups. In the literature load
composition at the time of peak loads or the load profiles has been used for clustering.
These types of data were not available for the system, and for this reason clustering was
implemented based on the monthly load class composition.

The analysis of event filtering results indicated that only a negligible number of events
recorded by the DFRs comply with the suitable event requirements (presented in the lit-
erature). The event filtering was shown to decrease the standard deviation of estimated
active load model values (indicating an increase in model precision). In addition, the im-
pact of measurement time, outside temperature, and penetration of distributed gener-
ation (connected to the load bus and not affecting the feeder losses) was analysed and
discussed based on measurement data acquired from case studies. These factors were
shown to have a significant impact on the estimation results.

In addition to the developed combined load modelling approach, component-based
modelling was conducted as a part of the research project "Static and dynamic charac-
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teristics of loads of Estonian electrical transmission network". In the project load models
had to be estimated for PSS®E (uses ZIP model) and PSCAD software (uses exponential
load model) based on component models found in the literature. This caused the need
for conducting load model conversions (ZIP to exponential, and exponential to ZIP model
conversion). When choosing the methods for conducting the conversions, it was found
that there is a lack of information on the accuracy of conversion methods. In order to
choose the best method, the conversion error of known methods was analysed and com-
pared.

The second objective of this thesis was to benchmark static load model conversion
methods (ZIP to exponential, and exponential to ZIP load model conversion) to assess
the accuracy of the methods. Numerical analysis of generated load models was used for
quantifying and comparing the conversion error of known and developed methods. The
developed methods for exponential to ZIP load model conversion were shown to have
better accuracy than the known method. Furthermore, the impact of conversion error on
load modelling error in load flow calculations was analysed based on a case study. The
results of the case study indicated that significant power flow calculation errors can be
caused by the inaccuracy of load model conversion. Static load model conversion error
and comparison of accuracy of conversion methods is a novel research topic.

Keywords

Clustering, Conversion error, Exponential model, Data mining, Distributed generation,
Load modelling, Static load models, ZIP model
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Kokkuvote
Ulekandevorgu sélmekoormuste staatiliste koormusmudelite
maaramine ja teisendamine

Elektrististeemiga tihendatud tarbimisseadmete koosseis ja kditumine muutub ajas. Tule-
nevalt siisteemiga tihendatud koormuse muutumisest on tarvis slisteemi modelleerimisel
kasutatavaid koormusmudeleid uuendada. Lisaks on kasvanud hajatootjate hulk, mis ko-
hati pohjustab slisteemi opereerimist slisteemi piiridele varasemast Iahemal. Selleks, et
opereerida slisteemi piiridele Iahemal ilma téokindluses oluliselt kaotamata on tarvilik
siisteemi varasemast tapsemalt modelleerida. Paraku s6ltuvad koormused nii ilmastiku-
tingimustest, tarbijate harjumustest kui ka teistest teguritest. Seetottu ei ole sageli voima-
lik Ghe tilekandevorgu tarbijate jaoks maaratud mudeleid teises vorgus rakendada. Eestis,
Latis ja Leedus on ettevalmistamisel IPS/UPS siisteemist deslinkroniseerimine ja stinkroni-
seerimine Mandri-Euroopa siinkroonalaga. Elektrististeemi tapsemaks modelleerimiseks
uuriti projektis "Eesti elektrististeemi tilekandevorgu koormuste staatilised ja diinaamili-
sed karakteristikud"llekandevorgu sdlmekoormuste mudeleid. Projekti partneriteks olid
Tallinna Tehnikatilikool ja Elering AS. Selle 16put66 koostamine algas nimetatud projek-
ti raames. Projekti kaigus tekkis tarvidus mudelite kombineeritud maaramise metoodika
valja tootamiseks ja rakendamiseks.

Doktoritod esimeseks eesmargiks oli llekandevorgu agregeeritud sélmekoormuste
mudelite mairamise metoodika vilja to6tamine. Valja to6tatud metoodika kombineerib
K-keskmise klasterdamismeetodit (kasutades sisendina ekvivalentaasta kuude koor-
muskoosseise), mdotesiindmuste filtreerimist (tuginedes stindmuse pohinaitajatele)
ja jareltootlust kasutades veaga kaalutud keskmistamist. Selline andmetdotlusmeeto-
dite kombinatsioon on uudne. Mdotestisteemide kasutatavuse anallilsil tuvastati, et
olemasolevate faasimddteseadmete ja elektrikvaliteedi analiisaatorite paigutus on koor-
musmudelite maaramise seisukohalt ebasobiv. Samas, hairingusalvestite moddetavate
suuruste kaudu oli véimalik tuvastada enamiku sélmekoormuste tarbimine. Lisaks sisal-
das hairingusalvestite andmebaas mitmete aastate jagu mooteandmeid. Nende andmete
tootlemiseks toctati valja metoodika ning rakendati MATLAB tarkvaras. Tulipmudelite
arvu vahendamiseks ning mitte moodetavatele s6lmekoormuste mudelite maaramiseks
voeti kasutusele K-keskmise klasterdamismeetod, mille abil on voimalik koormusi grupee-
rida. Kirjanduses kasutatakse grupeerimiseks koormusprofiile ja tipukoormuse aegseid
koormuskooseise. Paraku vastavad andmed ei olnud saadaval ja seetottu rakendati
klasterdamist Iahtudes ekvivalentaasta kuude koormusklassi koosseisudest.

Maootestindmuste filtreerimise tulemuste pohjal vastavad ainult Giksikud moodetud
siindmused kirjanduses esitatud sobiva méotestindmuse tingimustele. Kasutatud andme-
kogumi puhul vahendas filtreerimine maaratud vaartuste standardhalvet. Lisaks kasitle-
takse t66s mooteaja, valistemperatuuri ja hajatootjate moju sélmekoormuse mudeli maa-
ramise tulemustele Iahtudes teostatud juhtumiuuringutest. Tulemuste péhjal on nendel
teguritel oluline moju koormusmudelite maaramise tulemustele.

Lisaks kombineeritud koormusmudelite madramise metoodikale rakendati projektis
"Eesti elektrististeemi Ulekandevorgu koormuste staatilised ja diinaamilised karakteristi-
kud"komponentidepdhist koormusmudelite maiaramise metoodikat. Projekti raames oli
tarvis mairata mudelid nii PSS®E (kasutab koormuse ZIP mudelit) kui ka PSCAD tarkva-
ra (kasutab koormuse eksponentmudelit) tuginedes kirjanduses kirjeldatud mudelitele.
Komponentidepohise koormusmudelite maaramise metoodika rakendamisel tekkis va-
jadus eksponent- ja ZIP mudeli vaheliste teisenduste teostamiseks. Teisenduste teosta-
miseks meetodi valimisel ilmnes, et kirjandusest ei ole voimalik leida infot teisendusmee-
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todite tapsuse kohta. Info hankimiseks oli tarvis analiilisida ja vorrelda teadaolevate tei-
sendusmeetodite tapsust.

Doktorit6o teiseks eesmargiks oli staatiliste koormusmudelite teisendusmeetodite (ZIP
ja eksponentmudeli vahelise teisenduse) tapsuse hindamine. Tapsuse hindamiseks kasu-
tati numbrilist analiisi. Eksponentmudelite ZIP mudeliteks teisendamisel kasutatavate
meetodite teisendusvigade analliilsi ilmnesid seadusparad, millest Iahtudes té6tati valja
uued meetodid. Tuvastati, et uued meetodid on tapsemad kui teadaolev analiiitiline tei-
sendusmeetod. Lisaks analtiusiti koormusmudelite teisendusvea méju pusiseisundi arvu-
tuse tulemustele kasutades tuntud vorgumudelit. Tuvastati, et koormusmudelite teisen-
damine voib oluliselt méjutada arvutustulemusi. Koormusmudelite teisendamise tapsus
ja meetodite tapsuse vordlemine on uued temaatikad elektrististeemide modelleerimise
valdkonnas.

Marksonad

Andmekaeve, Eksponentmudel, Hajatootmine, Klasterdamine, Koormuste modelleerimi-
ne, Staatilised koormuskarakteristikud, Statilised koormusmudelid, ZIP mudel, Teisendus-
viga
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Appendix 1- Used Measurement Data

In Chapter 2 different sets of measurement data are used for illustrating different aspects
of load model estimation. In Table 4.1 the main properties of the used datasets are listed.

Table 4.1: Measurement data used in the thesis.

Number of Duration Type of Data Used in Other Details
Measured
Substations

92 January 2013 to Metering data  Section Monthly energy
September 2015 2.2.3 consumption of

substations, disag-

gregated by 5 load

classes
1 January 2018 to DFR Section
December 2020 2.3, Sec-
tion 2.4.2
1 December 2016 PQM Section
(1.5 hours) 2.4.1
1 February 2017 (1 PQM Section
hour) 2.4.3
2 April 2017 (3x PQM Section One of the substa-
1...1.5 hours) 2.4.3 tions was measured
also in February
2017
1 March 2017 (1.5 PQM, SCADA Section
hours) 2.4.4
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Appendix 2 - Included Publications

Publication |

M. Leinakse and J. Kilter, “Conversion error of exponential to second order
polynomial ZIP load model conversion,” in 2018 IEEE International Confer-
ence on Environment and Electrical Engineering and 2018 IEEE Industrial
and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo,
Italy, Jun. 2018, pp. 1-5, doi: 10.1109/eeeic.2018.8493667

©2018 IEEE. Reprinted with permission.
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Conversion Error of Exponential to Second Order
Polynomial ZIP Load Model Conversion

Madis Leinakse, Jako Kilter
Department of Electrical Power Engineering and Mechatronics
Tallinn University of Technology
Tallinn, Estonia
madis.leinakse @ttu.ee, jako.kilter @ttu.ee

Abstract—This paper presents two novel analytical methods
for exponential to second order polynomial (i.e. ZIP) load model
conversion. The load model conversion error of the proposed
methods and three known methods is compared based on the
results of conducted numerical analysis. The conversion accuracy
of the proposed analytical methods was found to be better than
the accuracy of previously known analytical conversion method.
In some cases, the conversion error of proposed methods was
comparable to non-linear least squares conversion results. It is
also shown that the load model conversion error depends on
the used conversion method, exponential load model parameter
values and the voltage used for error calculation.

Keywords—conversion error; exponential model; load model-
ing; static load models; ZIP model;

I. INTRODUCTION

According to the survey results presented in [1], several
software packages are in use for steady state and time-domain
simulations of power systems. The load models of the software
packages differ in some cases, e.g. PSS/E uses a ZIP model
based model [2], while PSCAD uses exponential model based
model [3] as the main load model. The main load model of
PSCAD and PSS/E are described in more detail in section II.

The need for load model conversion arises if two software
packages have a different load model and the system model of
one software is taken as a basis for constructing model for the
second software. If the raw data used for load model estimation
is available, the load model conversion may in some cases be
replaced by re-estimation of load models. A second use case
for exponential to ZIP model conversion is the application
of component-based load modelling. If the known component
models are in exponent format, the conversion to ZIP model is
useful for simplifying load model aggregation. ZIP models can
be accurately aggregated using weighted sum of ZIP models,
as was done in [4].

In case of load model conversion, the main goal is to
minimise the conversion error to preserve the original load
characteristics and to limit the additional modelling inaccuracy
of the power system model. For minimising the error between
measured and simulated values, non-linear least squares (NLS)
algorithms have been widely used due to their robustness

This paper was funded by the European Union via the European Regional
Development Fund.

and easy implementation [5]. The squared error minimisation
approach to load model conversion is presented in section
III-D. NLS conversion was implemented in this study to obtain
a comparison basis for the analytical methods.

Describing methods for load model conversion from ex-
ponential to second order polynomial is an uncommon topic
in load modelling papers. Still, an analytical method for
conversion from exponential to ZIP model has been described
in [6]. Analytical solution of that method is presented in
section III-A. The method was used in the cited paper without
considering the load model conversion error.

This paper consists of five sections. In section II, the
exponential load model, PSCAD load model, second order
polynomial load model (ZIP) and PSS/E main load model are
described. Next, in section III, five methods for exponential
to ZIP model conversion are presented. The load model con-
version error of the presented methods is analysed in section
IV. Finally, the main results of the study are summarized in
section V.

II. LOAD MODELS

In the following sections of the paper, equations are given
only for the real load component. The reactive component of
the load has mathematically similar equations.

A. Exponential Load Model and PSCAD Model Fixed Load

The exponential load model describes the voltage charac-
teristic of the load by an exponential equation (1).

Prxp = Py (V/V,,)KEer 4))

where P, is the real power of the load at nominal voltage V/,.

PSCAD load models Fixed Load L-L and Fixed Load L-
G are both based on exponential load model. Within voltage
range V/Vp € {0.8...1.2}, where V; is nominal voltage, the
PSCAD load models Fixed Load L-L and Fixed Load L-G
have exponential voltage characteristic (2).

P = Py(V/Vy)Kr )

where P is the real power of the load at nominal voltage V.
In case of lower and higher voltages, the PSCAD load
models behave as constant admittance load [3], similar to an
exponential load model with exponent value K, = 2. Accord-
ing to [3], the allowed K, values are: —5.0 < K, < 5.0.

978-1-5386-5186-5/18/$31.00 © 2018 IEEE



B. Second Order Polynomial (ZIP) Load Model and PSS/E
Load Model

The ZIP load model describes the voltage characteristic of
the load by a second order polynomial equation (3).

{PZIP = Po(Kz(V/Vi)? + K1(V/V,) + Kp)

3
Ky +Ki+Kp=1

where P, is the real power of the load at nominal voltage V/,;
Kz, K;, Kp are power components with constant resistance,
constant current and constant power, respectively.

The PSS/E main load model is based on the ZIP model.
Near nominal voltage, the PSS/E model can be described by
4).

P = Y Pload(V/V;)? + IPload(V/Vy) 4+ Pload  (4)

where Y Pload, IPload, Pload are in MW and represent
components of the load, and V} corresponds to the nominal
voltage of the load bus.

Similarly to the generic ZIP model (3), the PSS/E model
has three distinctive components: Y Pload with constant
impedance; I Pload with constant current; Pload with con-
stant power. At lower voltages, the constant current and
constant power components are modelled by elliptical voltage-
current (V-I) characteristics [2]. The constant current char-
acteristic is changed to elliptical V-1 characteristic at bus
voltages below 0.5 p.u. [2]. The constant power component
is switched to elliptical V-I characteristic if bus voltage is
below the PSS/E solution parameter PQBRAK value [2].
The solution parameter PQBRAK has setting values range
PQBRAK € (0,2] [2] and a default value of 0.7 p.u [2].
The value of the parameter PQBRAK can be changed by the
user in solution settings.

III. METHODS FOR EXPONENTIAL TO ZIP MODEL
CONVERSION

According to section II-A, in voltage range 0.8...1.2 p.u. the
voltage characteristic of PSCAD load model is (2), which is
equivalent to (1). Thus, conversion methods used for convert-
ing exponential load models can be used for converting pa-
rameters of PSCAD model Fixed Load if the voltage is within
the aforementioned voltage range. If the value of parameter
PQBRAK in PSS/E is 0.8 p.u. or lower, the PSS/E load model
in voltage range 0.8...1.2 p.u is (4), which differs from (3)
mainly by the component parameters Y Pload, IPload and
Pload. The values of these parameters can be easily found by
dividing the values of K, K and Kp with P,.

To summarise, methods suitable for converting from expo-
nential model (1) to ZIP model (3), can be applied for PSCAD
model Fixed Load to PSS/E main load model conversion,
keeping in mind the load model switching aspect of the
software tools, setting Vy = V}, and Py = Y Pload+IPload+
Pload.

The exponential load models can be converted to ZIP mod-
els by analytical methods, described in sections III-A, III-B
and III-C, or by non-linear squares optimisation, described in
section III-D.

A. Analytical Method AM1

In [6] the exponential models are converted to second
order polynomial models using a set rules and equations. The
suitable equation or set of parameter values is chosen based
on the value of the exponent K ggy,.

For exponent Kp,, values below 0.5, a constant power
model is used (5). A constant current model is used if the
exponent K, value is below 1 (6) and a constant admittance
model is used if the value of exponent Kg,, is larger than
2 (8). In exponent Kp,, value range 1..2, the values of
ZIP model parameters are calculated using (7), which is the
analytical solution of the equation system presented in [6].

K;=0
Kpep <05 — {K; =0 Q)
KZ:
05< Kpep <1.0— { K =1 (©6)
KP =0

Kz = Kggp —1

I.OSKE;,,-I, <20— Kr ZQ—KEzp 7)
Kp=0
Kz=1

Kpap>20— (K =0 ®
Kp=0

B. Proposed Analytical Method AM?2

When load model conversion method AMI, described in
section III-A, was analysed, it was found that the method can
be improved. Method AM1 displayed high conversion error
if Kgyp < 0 and had a local error maximum at Kpgg), =
0.5. Firstly, it was found that if 0 < Kgsp, < 1, (9) is more
accurate than (5) and (6). Numerical analysis indicated that
for Kggp < 0, (9) has lower conversion error than (5) and
(8). As a result, (9) was applied to K, < 1.

The 1.0 < Kpggp < 2.0 range in (7) was extended to
Kgyp, > 1 in (10), because if Kpg,, > 2, the voltage
sensitivity of the load is larger than Kz = 1 and the result
of (10) is closer to the exponential input characteristic Kpzp
than ZIP characteristic Kz = 1.

In case of Kgyp, = 0 and 1.0 < Kpggp < 2.0, the
conversion results of method AM1 and proposed method AM2
are equivalent.

Kz;=0

KETP <l— KI = KEzp (9)
KP =1- KEzp
Ky =Kgyp—1

KEzp >1— KI =2- KE:rp (10)



C. Proposed Analytical Method AM3

The exponential (1) and polynomial (3) load model are
equivalent at nominal voltage V;,, because if V/V,, = 1, then
P = P,. At intersections of the load characteristics, the load
equations have equivalent values Pz;p = Ppxp:

Kz(V/V)? + K((V/V) + Kp = (V/V,)X2=r (1)
Replacing Kp in (11) with 1 — Kz — K and simplifying
the equations leads to derivation of (12).
(V/V,)Ker — 1
V/V,—1
Equation (12) includes two unknowns: K and K. Thus,
the equation has 0...00 solutions. To limit the number of solu-
tions to 0...1, it is assumed that 2 intersections of polynomial
and exponential characteristic exist at voltages V; and V.
Using the assumption, (13) is derived.

Kz(V/Vi+1) + K = (12)

Vi)Keen — 1
K;(Vi+1)+K;= L
Vi—1 13)
(‘/Q)KEJ.‘]J -1
Kz(Vo+ 1)+ Ky =2 — ——
Vo—1

where V; and V5 are in p.u., normalised with nominal voltage
V.

The solution of equation system (13) is (14). The value of
Kp can be found from values of K and K using equation
(15).

VlKEzpfl
Kz 1 1 -1 V1
VvV V. K. a4
K 1= V2 y, 1 41| Ve —1
Vo—-1
Kp=1-Kz - K; (15)

D. Conversion by Non-linear Least Squares Optimisation

In case of load model conversion, the goal is to minimise
the difference between the input model and output model.
This optimisation problem can be written as a non-linear least
squares optimisation problem, which has the goal to minimise
the sum of squared errors.

N
minJ = Z[Q]Z
i=1

If the error ¢; in (16) is represented by conversion error
€; (19), the model conversion problem can be formulated by
(17). In section IV, the optimisation of absolute error is noted
by NLS abs.

16)

N
min J = Z(PEXP(Vi) — Pzrp(Vy))?

i=1

amn

If instead of conversion error €;, the relative conversion error
n; (20) is used as ¢; in (16), the objective function (18) is
obtained. In section IV, the non-linear squares optimisation of
relative error is noted by NLS rel.

min J = iv:(PEXP(Vv:) - PZIP(Vi))z

18
Ppxp(Vi) (18)

i=1

IV. CONVERSION ERROR ANALYSIS
A. Measures of Conversion Error

In case of exponential to ZIP model conversion, the ex-
ponential voltage characteristic of the load Prxp (1) is
assumed to be accurate. The difference ¢; (19) between the
accurate voltage-power characteristic Pgx p (1) and converted
characteristic Pz;p (3) at voltage V; is considered to be
conversion error at voltage V;. The relative conversion error
at voltage V; is n;. In some figures, the relative error is given
in percentages, in those instances, the value of 7; has been
multiplied by 100.

ei = Pexp(Vi) — Pzip(V3) (19)
o Pexp(Vi) — Pzip(Vy)
! Pgxp(Vi)

The values of ¢; and 7, are used for analysing the direction
of the conversion error. In analysis steps, where the maximum
conversion error is more important than the direction, the ab-
solute values of €; and 7, are used. To quantify the conversion
error across a voltage range V;...Vyy, the Mean Absolute Error
(MAE) (21) and Mean Absolute Percentage Error (MAPE)
(22) are used. MAE describes the mean magnitude of conver-
sion error ¢; and MAPE the mean absolute value of relative
conversion error 7);.

(20)

N
1
MAE = — ; |Pexp (Vi) — Pzrp(V;)] @1

Ppxp(Vi) — Pzip(V5)
Pexp(Vi)

100%
MAPE = N Z

i=1

(22)

In this paper, voltage range 0.8...1.2 p.u. was used as MAE
and MAPE calculation range V;...Vyy. This range corresponds
to voltages where described PSCAD load models behave as
exponential model and the PSS/E load model corresponds to
a ZIP model (assuming the value of PQBRAK to be 0.8 p.u.
or lower).

B. Input Models and Notation of Methods

The set of exponential load models for load model conver-
sion error analysis was calculated using 0.01 step size and
value range -5...5. This led to a dataset of 1001 exponent
values with even distribution. The analysed range is equivalent
to the allowed range of PSCAD load model exponent values.

Exponential load models were converted to second order
polynomial load models by using 5 different methods:

o AMI: analytical method described in section III-A

o AM2: proposed method described in section III-B

o AM3: proposed method described in section III-C

« NLS abs: optimisation of squared conversion error de-
scribed by (17) in section III-D

o NLS rel: optimisation of squared relative error described
by (18) in section III-D



C. Mean and Maximum Absolute Conversion Error of Com-
pared Methods

The value of MAE (21) and MAPE (22) was calculated
for each load model conversion using voltage range from
0.8 to 1.2 p.u. The same voltage range was used for load
model conversion. In total, 1001 MAPE and MAE values were
obtained for each conversion method. The results were plotted
in Fig. 1 and Fig. 2.

According to the two figures, the mean conversion error
(MAE and MAPE) of negative K g, value is typically larger
than the error of positive K g, value with equivalent absolute
value. The model conversion error is approximately symmet-
rical for K., = 1. An exception to the described trend is
analytical method AMI at Kg,, = (0..1). AMI has a local
peak at K, = 0.5, at the boundary of (5) and (6).

The complexity of analytical methods AM1 and AM2 is
mathematically similar. However, the proposed method AM?2
offers lower conversion error than method AMI. For this
reason, the use of method AMI is not recommended and
proposed method AM2 should be used instead. For more accu-
rate conversion results, proposed method AM3 or optimisation
methods should be used. The higher conversion accuracy
(and lower conversion error) of proposed method AM3 and
optimisation methods, NLS abs and NLS rel, becomes more
apparent at low and high K g, values.
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Fig. 1. Impact of input model exponent K ;) on the mean absolute error
(MAE) of conversion.
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Fig. 2. Impact of input model exponent Kg., on the mean absolute
percentage error (MAPE) of conversion.

TABLE I

CONVERSION ERROR OF EXPONENTIAL MODELS WITH Ky = —5 AND
Kpgyzp = 5: MEAN ABSOLUTE ERROR (MAE) AND MEAN ABSOLUTE
PERCENTAGE ERROR (MAPE)

Conversion KEgzp = —5 Kgzp =5
method MAE (p.u.) | MAPE (%) | MAE (p.u.) | MAPE (%)
AMI 0.581 52.284 0.322 32.300
AM2 0.227 21.674 0.082 9.691
AM3 0.085 8.482 0.020 2.235
NLS abs 0.043 4.438 0.011 1.312
NLS rel 0.046 3.363 0.012 1.164

According to Table I, the MAE and MAPE of method AM2
are up to 10 times larger than the error values of optimisation
methods, at K gy, = —5 and K.y, = 5. The MAE and MAPE
of AM3 are approximately two times larger than the values of
NLS abs and NLS rel at the same K, values.

The MAE and MAPE of proposed method AM3 were larger
than the values of NLS abs and NLS rel in Fig. 1, Fig. 2 and
in Table I. The maximum absolute value of conversion error
(19) and relative conversion error (20) shown in Fig. 3 and
Fig. 4 display a different result. The maximum absolute errors
of AM3 are at the same level as NLS abs and NLS rel. The
maximum absolute value of AM3 conversion error in Fig. 3 is
on same level as NLS abs and the maximum absolute relative
conversion error in Fig. 4 is between NLS abs and NLS rel.
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Fig. 3. Impact of input load model exponent value K ., on the max absolute
value of absolute error of conversion.
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D. Methods NLS abs and NLS rel: Voltage Dependence of
Conversion Error

The exponential load models were converted to ZIP models
using voltage range from 0.8 to 1.2 p.u. Conversion error (19)
and relative conversion error (20) were calculated for NLS abs
and NLS rel, respectively. The conversion error of method
NLS abs is plotted for selected Kg,, values in Fig. 5 and
relative conversion error of NLS rel in Fig. 6. According to
the figures, the conversion error and relative conversion error
of optimisation based methods have a voltage dependence.

According to Fig. 5, the direction of conversion error for
analysed K g, values is related to the sign of Kpgg,. The
errors of negative K., values are in opposite direction to
the positive K., values. The smallest conversion error, zero,
occurs at 3 points: at nominal voltage V' = 1 p.u. (where power
is nominal) and two additional voltages, V' = 0.83 p.u. and
V' = 1.16 p.u. At these points, the exponential and polynomial
line intersect. In section III-C, 2 intersection points V; and Va
were used for deriving (13), which was a key step in AM3
derivation. The results in Fig. 5 justify the assumption. The
intersections occur within the optimisation region, between
voltages 0.8 and 1.2 p.u. In addition, the intersection points of
different K., values are close, indicating a low sensitivity
to value of Kpgy,, if Kpggy, is within the analysed region
—52> Kpgap < 5.
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Fig. 5. Method NLS abs: impact of voltage and input model exponent K g,
on conversion error.
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Fig. 6. Method NLS rel: impact of voltage and input model exponent K.,
on relative conversion error.

Similarly to Fig. 5, in Fig. 6 the direction of the relative
conversion error is related to the sign of Kg,,. However, the
intersection points of characteristics in Fig. 6 depend on the
value of Kg,p. The larger the Kg,), value, the more to the
left the intersection points are located.

E. Proposed Method AM3: Voltage Dependence of Conversion
Error

Conversion error (19) and relative conversion error (20) of
proposed method AM3 have voltage dependency according to
Fig. 7 and Fig. 8. Similarly to Fig. 5 and Fig. 6, the direction
of the error depends on the sign of K. In case of positive
Kpg,p, values, the error is positive below nominal voltage
and negative at higher voltages. This means that the second
order polynomial characteristic of AM3 has lower load values
than exponential input characteristic below nominal voltage
and higher values above nominal voltage, if Kg;;, > 0. For
Kg,p < 0, the opposite applies.

The conversion error is zero at the intersection points of
exponential input characteristic and second order polynomial
output characteristic. In Fig. 7 and Fig. 8, the intersection
points are located at 0.8 p.u., 1.0 p.u. and 1.2 p.u. Thus,
using the range boundary values 0.8 p.u. and 1.2 p.u. as Vj
and V5 in (14), the lowest conversion error will occur at the
voltage boundaries. This is an expected result, for deriving
(13) equivalence of exponential and ZIP characteristic at V;
and V5 was used.
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Comparison of the intersection points at Fig. 7 and Fig. 8
with intersection points of Fig. 5 and Fig. 6 suggests that the
MAE and MAPE of AM3 could be decreased by changing
voltage V; and V5 to values within the desired accurate
conversion range. The selection of best V; and V5 value was
not in the scope of this study.

FE. Proposed Method AM?2: Voltage Dependence of Conversion
Error

The conversion error (19) and relative conversion error (20)
of proposed method AM2 in Fig. 9 and Fig. 10 are lowest
near 1 p.u. voltage, where the load is close to nominal. Zero
error occurs in case of Ky, = 1. At K., = 1, the error-
less conversion is possible, because the exponential model is
equivalent to the constant current component of the ZIP model.
Similar error-less conversion takes place for Kgy;, = 0 and
Kgzp = 2. These three K, values are exceptions, for other
K.y values, a conversion error occurs with method AM2.

In Fig. 5, Fig. 6, Fig. 7 and Fig. 8, the conversion error was
zero in 3 points, indicating 3 intersections of exponential input
characteristic and second order polynomial output characteris-
tic. The conversion errors in Fig. 9 and Fig. 10 have positive
values across voltage range 0.8...1.2 p.u. and zero error only
at nominal voltage 1 p.u. The positive sign of error, (19) and
(20), indicates that the ZIP characteristic calculated by AM?2
typically underestimates the load compared to the exponential
input characteristic.
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Fig. 9. Proposed method AM2: impact of voltage and input model exponent
KEqp on conversion error.
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Fig. 10. Proposed method AM2: impact of voltage and input model exponent
KEqp on relative conversion error.

V. CONCLUSION

The main load models of PSCAD and PSS/E are at near
nominal voltages similar to exponential and second order
polynomial (ZIP) load model, respectively. Thus, the methods
suitable for exponential to ZIP model conversion can be used
for PSCAD load model to PSS/E load model conversion. In
this study, three analytical conversion methods for exponential
to second order polynomial model were described, the load
model conversion error was evaluated and a comparison was
made based on absolute error and relative error minimisation
solutions.

Firstly, it was shown that the conversion error depends on
the conversion method. The analytical method AM1 described
in section III-A had the highest conversion error and is not
recommended for use. Proposed method AM2 presented in
section III-B should be used instead, if a simple conversion
method is needed. Method AM2 has similar mathematical
complexity and causes significantly lower conversion error
than the non-recommended method AMI. More accurate
conversion results can be obtained using proposed analytical
method AM3, presented in section III-C, or by the use of non-
linear least squares optimisation.

The analysis of conversion error indicated that the con-
version error depends on the value of input load model
exponent K. In case of all methods, the conversion error
is smallest at exponent values 0, 1 and 2. At these values, the
exponent and second order polynomial model have equivalent
characteristics. The conversion error is larger for negative
exponent values, when compared to positive exponents with
same absolute value. It was found that the mean absolute
error (MAE) and mean absolute percentage error (MAPE) of
conversion are nearly symmetrical to exponent value 1.

It was shown that the conversion error is voltage dependent
and the direction of error depends on the sign of Kpgg, in
case of optimisation based conversion methods and proposed
method AM3, the method presented in section III-C. The
conversion error indicated that the ZIP characteristics found
by optimisation results have typically 3 intersections with the
exponential characteristic.
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Abstract: This paper analyses the conversion error that occurs when second order polynomial (i.e. ZIP) load model is converted
to exponential load model. Two conversion methods are used: an analytical method and a non-linear least squares based method.
The conversion error of both methods is described and compared based on numerical analysis. It is shown that the load model
conversion error depends on the input load model parameter values, used method, chosen voltage and the voltage sensitivity of

the characteristic.
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1 Introduction

Many software packages are available for conducting steady state
and time-domain studies of electrical power systems and are in
active use according to [1]. Usually these software tools include load
model(s) for describing the voltage characteristic of the load. Sev-
eral different models are in use, for example the main load model of
PSS/E is based on a second order polynomial equation [2-4], while
PSCAD offers an exponential model [3-5].

The active use of several models causes in some cases the need for
load model conversion. The conversion of ZIP to exponential model
has been used for comparing load models [1] and plotting load model
changes in time [6]. In addition, the load model conversion may be
required if ZIP models of loads are known from component-based
modelling or validated power system model, and a software is taken
into use with exponential load models [3].

Generally, the exponential model obtained as a result of a load
model conversion is not equivalent to the original ZIP model. In this
paper, the often neglected aspect of load model conversion error is
analysed and the accuracy difference of analytical and non-linear
least squares conversion is shown. Several conversion methods for
opposite conversion direction, exponential to ZIP model conversion,
were presented, compared and analysed in [4].

This paper consists of five sections. In section 2, the second order
polynomial (ZIP) and exponential load model are described. The
methods for converting from ZIP model to exponential model, and
measures of conversion error, are presented in section 3. An evalu-
ation of model conversion error is given in section 4 based on the
results of numerical analysis. The main findings of the work are
summarised in section 5.

2 Load Models

This paper focuses on the load model conversion from generic ZIP
load model to exponential load model. The specifics of PSS/E and
PSCAD load model that have to be taken into account when con-
verting the models of these software packages have been discussed
in [3, 4].

In case of ZIP and exponential load model, the models can be
defined using the nominal value [4, 7] or initial value [7-9] of voltage
and power. In this paper, the nominal value based load model defini-
tions are used. The conversion error analysis results of the paper also
apply to models normalised based on initial values, if both the input

and output model use the same base value. Conversion of models
with base value mismatch is discussed in section 3.2.

2.1  Second Order Polynomial (ZIP) Load Model

The second order polynomial load model, also known as a ZIP
model, can be described by (1) subject to (2). Reactive load is
represented by a similar equation.

Pyip = Po-[Kz - (V/Va)® + Kp - (V/Va) + Kp] (1)

Kyz+Kr+Kp=1 2)

where Vj, corresponds to the nominal voltage of the load bus. Py
is the real power of the load at nominal voltage V,,. Kz, Ky,
Kp describe the contribution of load components with constant
resistance, constant current and constant power, respectively.

The values of Kz, K1 and Kp may in some cases be limited to
range 0...1, such ZIP model is called a "constrained ZIP model" [10].
Without these constraints the model is considered to be an "accurate
ZIP model" [10].

2.2 Exponential Load Model

The exponential load model can be described by (3), reactive load is
represented by a similar equation.

Pexp = Po - (V/Vn)5Eer ©)

where P, is the real power of the load at nominal voltage V),, and
K Ezp is an exponent describing the voltage characteristic of the real
power of load.

3 Load Model Conversion Methods and Error

3.1  Analytical Method for ZIP to Exponential Model
Conversion

For conversion from ZIP model to exponential model, [1] and [6]
have used equation (4), reactive load exponent can be calculated sim-
ilarly. In section 4, load model conversion by this method is noted by
keyword Analytical.

2 Kz+1-K;+0-Kp

KEgep = 4
Exp Ky + K[+ Kp 4)




3.2 Using Non-linear Least Squares Optimisation for
Conversion

The goal of load model conversion is to minimise the conver-
sion error. This aim can be written as a non-linear least squares
optimisation problem (5).

N
min ) () ®)
i=1

If the conversion error 1); in (5) is represented by absolute conver-
sion error ; (8), the model conversion problem can be formulated by
(6). The reactive load models can be converted similarly. In section
4, load model conversion by minimisation of squared absolute error
is noted by NLS abs.

N
min Y (Pzrp(Vi) = Ppxp(Vi)? (©
i=1

where V; is normalised voltage V/Vy, Pzrp is (1) and Ppxp is
(3).
If the base power and voltage of known ZIP model and desired
exponential model differ, the differences can be taken into account
by using different value of P, and V), in the equation of Pzp (1)
and P EXP (3)

However, if P;;p and Py x p use the same normalisation bases,
P, and V), the optimisation problem (6) can be simplified to
equation (7).

N
min ) ([Kz - (Vi)? + Kr - (Vi) + Kp] - (Vi)KEW)Z )
i=1

3.3 Measures of Conversion Error

In case of ZIP to exponential model conversion, the voltage charac-
teristic of the ZIP model Pz;p (1) is assumed to be accurate. The
difference €; (8) between the accurate voltage-power characteristic
Pzrp (1) and converted characteristic Prx p (3) at voltage V; is
considered to be conversion error at voltage V;.

ei = Pzrp(Vi) — Pexp(Vi) ®)

To quantify the conversion error across voltage range V; €
{V1..Vn} (i, N € N) the Mean Absolute Error (MAE) (9) is used.
MAE describes the mean magnitude of conversion error ;.

N
1
MAE = N;‘PZIP(W)_PEXP(VDI (O]
iz

In this paper, voltage range 0.8...1.2 p.u. was used as MAE calcula-
tion range V7...Vyy, similarly to [3, 4, 11].

4  Conversion Error Analysis
4.1  Input Models and Notation of Methods

To obtain ZIP model parameter sets, two random vectors with values
-25...25 were generated with uniform distribution. A third vector was
calculated so that the sum of ZIP model parameters would be 1 (2).
As a result, a set of nearly 30000 models was obtained, which was
found to be sufficient for analysis of the conversion error.

ZIP to exponential load model conversion was done using 2
different methods:

o Analytical: analytical method described in section 3.1
e NLS abs: conversion method based on minimisation of squared
absolute error described in section 3.2

The exponent K, values obtained by the use of the afore-
mentioned methods differ significantly, as shown by Fig. 1. The
smallest result difference occurs near Kpyp, = 0.5 and largest at
high absolute values of K g,p. Typical differences are close to 1
unit.
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Fig. 1: Calculated exponent K g, values of Analytical and NLS
abs method.

4.2 Mean Absolute Error of Conversion

Fig. 2 displays the mean absolute error (MAE) (9) of ZIP to expo-
nential model conversion. ZIP models with analytical K, values
—8 < Kgyp < 8 are shown. According to Fig. 2, the conversion
error displays a significant variation for all K g, values, difference
of MAE for a specific Kpyy value is 0.2...0.3 p.u. Thus, it is not
possible to assign a specific MAE value for each calculated K gy
value. However, it is possible to notice that the lowest maximum
values of MAE occur in K g, range -1...3. The error for negative
K Egqp values (compared to K g, values with equal absolute value)
are larger.
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Fig. 2: Relation between the calculated model exponent value
K 4 and the mean absolute error (MAE) of the load characteristic.

The MAE value difference of analytical and NLS abs method
AMAE (10) is plotted in Fig. 3. ZIP models with NLS abs deter-
mined K gy, values —5 < Ky, < 5 are shown.

AMAE = ]MAEAnalytical - JWAENLSabs (10)

The mostly positive AMAE values in Fig. 3 indicate that the con-
version accuracy of NLS abs method is higher than the accuracy of
analytical method. Also, it is possible to notice that the lowest differ-
ence occurs for K, values in range -1...2 where AMAE is below
0.02 p.u. Outside that K g, range, the use of NLS abs over analyti-
cal method may provide significant increase in conversion accuracy.

4.3 Voltage Dependence of Conversion Error

The load model conversion error € (8) depends on voltage. The volt-
age dependence of conversion error of analytical method is shown
in Fig. 4 and Fig. 7, and NLS abs in Fig. 5 and Fig. 8. ZIP mod-
els with NLS abs determined K gy, values —5 < Kpyp <5 are
shown. According to the mentioned figures, the conversion error of
both analysed methods, NLS abs and analytical, is lowest near nom-
inal voltage. This is an expected result, as near nominal voltage, the
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Fig. 3: Relation between the exponent value K g, of NLS abs
method and mean absolute error decrease AM AFE compared to
analytical method.

load is close to nominal as well, independent of load model parame-
ter values. The analytical method, Fig. 4, displays largest conversion
errors at lower voltages while the NLS abs method, Fig. 5, at higher
voltages. Thus, the voltage dependence of the analysed conversion
methods differs.

o w»mo

— R Lot
n

D
o

Conversion error &, p.u.

-0.5
-1.0
08 085 09 095 1 1.05 1.1 L5 1.2

Voltage \"i. p-u.

Fig. 4: Voltage dependence of analytical conversion method. Accu-
rate ZIP models.

0.0

-0.5

Conversion error &, p-u.

-1.0
08 085 09 095 1 1.05 1.1 LIs 1.2

Voltage \"I. p.u.

Fig. 5: Voltage dependence of NLS abs conversion method. Accu-
rate ZIP models.

To analyse the difference between Fig. 4 and Fig. 5, Ag; is plotted
in Fig. 6. A¢g; is the difference between the absolute conversion error
of analytical and NLS abs conversion method, defined by (11). The
absolute values of conversion error are used to detect which conver-
sion result is closer to the accurate voltage-power characteristic at
voltage V;.

Ag; = ‘5i,Arl,(1,l'_(/ti(:a,l‘ - I‘Si,NLSu,bS‘ (1)

Fig. 6 indicates that the gains of using NLS abs method instead
of analytical method can be significant at voltages further from the
nominal voltage (V; = 1 p.u.). The gains are higher for lower volt-
ages, compared to higher: Ae; values at 0.8 p.u. are higher than at
1.2 p.u.
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Fig. 6: Relation between voltage V; and conversion error decrease
Ae when NLS abs is used instead of analytical method.

Voltage dependence of constrained ZIP model conversion error is
shown in Fig. 7 and Fig. 8. The conversion error for both methods,
analytical and NLS abs, is unidirectional, indicating that the esti-
mated exponential characteristic runs above the ZIP characteristic
(in V-P plane) and the load is overestimated by up to 0.02 p.u. if
voltage is near 0.8 p.u.
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Fig. 7: Voltage dependence of analytical conversion method. Con-
strained ZIP models.
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Fig. 8: Voltage dependence of NLS abs conversion method. Con-
strained ZIP models.
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4.4 Impact of ZIP Model Parameter Values on Conversion
Error

Fig. 9 describes the impact of ZIP model parameter values
Kz,Kj, Kp on the mean absolute error (MAE) (9) of conver-
sion. ZIP models with NLS abs determined exponent K g, values
=5 < KEggp < 5 are shown.

The highest conversion error (maximum value in Fig. 9) occurs if
ZIP load model parameter K 7 has a large negative value while K
has a large positive value. In such cases, based on the AM AE plots,
the NLS abs method is able to decrease the MAE value by about
half, compared to the analytical method. However, from the figure
it is apparent that the gain of using NLS abs method is not directly
linked to the values of ZIP load model parameters K 7, K, K p, as
for each value of Kz, K and K p, a range of AM AFE values were
found.

In Fig. 9, the conversion error of constrained ZIP models with
0< Kz,Ky,Kp <1, which corresponds to 0 < Kpy), < 2, is
negligibly small compared to the errors of models with more relaxed
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Fig. 9: Mean absolute error (MAE) dependence on ZIP model parameters Kz, K and Kp.

constraints. Fig. 10 illustrates the dependence between MAE, expo-
nent K 5, and constraints of ZIP model parameters Kz, K and
K p. The model conversion was conducted using NLS abs method.
Based on Fig. 10, the larger the ZIP model parameter value limits,
the larger the variability of mean absolute error of conversion and
the larger the maximum values of MAE.
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Fig. 10: Impact of ZIP model parameter constraints on the mean
absolute error (MAE) of conversion. Calculation method NLS abs.
Plotted subsets filtered based on ZIP load model parameter ranges
-1..1,-2..2,-3.3 and -5..5.

5 Conclusion

In this paper, two methods for second order polynomial (i.e. ZIP)
to exponential load model conversion were described. The first
presented conversion technique was an analytical method and the
second a non-linear least squares based approach. The conversion
error of the methods was analysed with respect to voltage, input and
output load model parameter values based on numerical analysis.

The difference between the value of exponential parameter K g,
determined by the conversion methods was smallest near K gy
0.5. A typical difference of K g, value estimated by the meth-
ods was within 0...2 units. The lowest conversion error difference
occurred for K g, values in range -1...2, where the mean abso-
lute error difference AMAE is below 0.02 p.u. Outside that K g,
range, the use of non-linear least squares over analytical approach
may provide significant increase in conversion accuracy.

It was shown that the conversion error of both analysed methods is
lowest near the nominal voltage, which was an expected result. The
conversion error of analytical method was largest at lowest voltages,
while the NLS abs method at highest voltages. Still, mostly the expo-
nential models obtained by the use of NLS abs method displayed a
higher accuracy across the whole analysed voltage range.

‘When the impact of input load model parameter values on conver-
sion error was analysed, the impact of model parameter constraints
was found to be significant. The variability and maximum value
of the mean absolute conversion error (MAE) increased when the



model parameter value constraints were increased. The highest con-
version error occurred if K had a large negative value and Ky a
large positive value. In such cases, the NLS abs method was able to
decrease the MAE value by half, compared to the analytical method.
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Abstract—This paper discusses the aspects of measurement-
based load model identification of aggregated transmission system
bus loads. A novel post-processing method for calculating a
single load model parameter value from a set of event-based
values is presented. The proposed method offers a way to
combine the estimated load model parameters with the results
of data validation. This approach may provide better results
than commonly used average value calculation if the number of
samples is relatively small. A measurement-based case study was
conducted to test the load model identification methods. Shunt
reactors were used for inducing voltage disturbances instead of
commonly used OLTC (on-load tap changer) switching. The static
load model variability with respect to day periods (day, evening
and night) is analysed.

Index Terms—exponential model, load modelling, static load
models, ZIP model

I. INTRODUCTION

Three different methodologies are in use for load modelling:
component-based, measurement-based and the combination
of the two. In case of the component-based approach, the
aggregation of load component models is used to identify the
model of the aggregated load. This approach has been used
for example in [1]. To apply this method, statistics of load
component power consumptions and load component models
are needed. Obtaining the required data is challenging or
often even impossible due to data ownership issues, especially
for higher voltage levels [2]-[4]. The second load modelling
method, measurement-based approach, uses measurement data
for load model estimation. Measurement-based load modelling
typically involves taking measurements (with sampling rate
of 1 Hz or higher), pre-processing the measurement data,
estimating the load model, validating the load model and post-
processing the results. In some cases, data analysis stages may
be repeated if obtained result is not within desired boundaries.
To identify the voltage sensitivity of load by measurement
based load modelling, voltage changes are needed.

The voltage changes may be either naturally occurring
[5], [6] or induced [2], [7] for measurement purposes. Due
to the difficulties associated with the usage of component-
based method and the increasing number of measurement
devices available in power systems, the measurement-based

978-1-5386-4505-5/18/$31.00 © 2018 IEEE

approach is preferable in many cases [4], [8]. The complexity
of measurement-based load model identification is related to
the variability of load: the aggregated load changes in time [9],
is affected by weather [10] and has stochastic nature [11]. In
this paper, the measurement-based load modelling is used due
to the lack of load component data and to assess the suitability
of available measurement systems for load modelling.

Hourly and daily variability of load characteristics has been
discussed in [1], [2], [12]-[15]. In these papers, the load
characteristics of case studies or in some cases customer cat-
egories are presented. The voltage characteristics of aggregate
load depend on load composition. The load composition is
dependent on the structure of the industrial sector, habits of
end users, weather and many other factors. Therefore, load
model parameters estimated for a specific grid should not be
directly applied to other grids [16]. In articles [1], [2], [12]-
[15], the load characteristics estimated in Austria, Canada,
Serbia, South Africa, UK and other countries have been
discussed. The intra-day variability and load model parameter
values identified were contradicting. For this reason, and due
to missing data for countries similar to Estonia, a pilot case
study was conducted for improving the understanding of the
behaviour of the aggregated loads of Estonian transmission
system. The results of the case study are presented in this
paper.

The introduction section of the paper is followed by three
main sections. In section II, used load model estimation
methodology is explained together with a novel method for
estimated load model post-processing. The conducted case
study is described in section III. In addition, section III
illustrates the impact of load model post-processing on the
identified load models and presents the results of the case
study. The conclusions of the paper are summarised in section
Iv.

II. METHODOLOGY

A. Inducing Voltage Disturbances

Often, the on-load tap-changer (OLTC) of transformer is
used for inducing voltage disturbances, OLTC has been used



for example in [2], [5] and [7]. Another option is to use Static
Var Compensator as was proposed in [3].

In this study, voltage disturbances were induced by a com-
bination of reactor switching in the 330 kV network and net-
work reconfiguration. The network reconfiguration was used
for sustaining acceptable bus voltages on all network buses.
The reactors were located at 330/110 kV substations tens of
kilometres away from the measured 110/10 kV substations.
The distance caused some attenuation of voltage deviations,
but most of the relative voltage change induced in 330/110 kV
substations was visible in 110/10 kV substations. Using reactor
switching, it was possible the achieve voltage deviations up to
a few per cent. The aim of was to hold each voltage level for
5...10 min, as has been recommended in [2].

B. Measurement Data Pre-processing

Induced voltage disturbances were detected in measurement
data by using sliding analysis window and averaging, similarly
to [17]. The method uses the difference of mean values of two
vectors with equal length (1).

Vold/n - Vncw/n

AV =
Voia/n

-100% (€))]
where V4 and V,,.,, are the sum of n old and n new samples,
respectively, and n is the length of the averaging window.

The value of AV is compared with the event threshold
value, and if AV is larger than the threshold value, the voltage
difference indicates a voltage event. The first sample of the
second vector is considered as the start of the event and the
index of that sample is used for determining the time of the
event. In this paper, to improve event detection, a secondary
search was conducted in proximity of initially detected time
value and the time with largest relative voltage change AV
was recorded as the time of the event.

According to [5] and [8] small voltage changes of 0.5%
can be used for load modelling. The same value was used in
this study, so only voltage changes with AV > 0.5% were
considered as events. The averaging window length was 20
seconds in [17]. In this paper, n value corresponding to 10
seconds was used.

C. Load Model Estimation

Parameters of exponential and ZIP model were estimated.
The exponential load model can be described by equations (2)
and (3).

P = Py(V/Vy) Ko )

Q= Q()(V/V[))va 3

where Py and @)y are real and reactive power of the load at
initial voltage Vj respectively.

ZIP model can be described by (4) and (5). The ZIP model
has three distinctive components: K, and K,, with constant
impedance (power proportional to the square of voltage); K,

and K; with constant current (power proportional to voltage);
K,, and K, with constant power (independent of voltage).

P = Py(Kp.(V/V0)? + Kpi(V/Vo) + Kpp) (4

where K., K,;, K, represent constant resistance, constant
current and constant power type of real load component,
respectively. Vj corresponds to the initial voltage.

Q = Qu(Kq:(V/Vo)* + Kui(V/Vo) + Kqq) ©)

where K., K,, K, represent constant reactance, constant
current and constant power type of reactive load component,
respectively.

The load model estimation problem can be formulated based
on minimisation of mean square error and expressed by (6).
Least squares based load model estimation is a common
solution for estimating load models from measurement data.
It has been used for example in [5], [6], [18]. In [18] a
comparison with Genetic Algorithm and Simulated Annealing
is provided. Following equations are given for real power,
reactive load models are estimated similarly.

1
min M SE = min N Z(Pmodeu - Pmeasi)2 (©)
i=1

For estimating exponential load model parameters, follow-
ing model equation and boundary conditions can be used for
(6).

* 'modeli = -P(J(‘/i/‘/U)KpU

e —10.0 < K,, <£10.0

e —10.0 < Ky, £10.0

For estimating ZIP load model parameters, following model
equation and boundary conditions can be used for (6).

. Pmadeli = PO(sz(Vi/VO)Z + K;m(vl/‘/()) + KPI’)

o K+ Kpi +Kpp =1

¢ —10.0< K,, <10.0

e —10.0 < K,; <£10.0

e —10.0 < K,, <10.0

D. Validation

Relatively small voltage disturbances (mostly < 1%) were
used for load model estimation. These voltage disturbances
cause only small load deviations, often with comparable ampli-
tude to the stochastic load variations. To validate the identified
models, the modelling error is quantified by commonly used
measures. Mean Square Error (MSE) (9) has been used in
[18], typically the values were in the range 1-107°...10-1075.
Normalized Mean Square Error (NMSE) (10) has been used in
[19] and [22]. Alternatively, Mean Absolute Error (MAE) (7)
can be used [21]. Normalized Mean Absolute Error (NMAE)
(8) has been used in [6], [20], [21]. For all four measures of
simulation error, the calculation is done based on measurement
samples P,,cqs; and modelled values P,,q4¢14, Where ¢ is the
index of the sample from 1...N. The reactive power modelling
errors are calculated in the same way.

N
1
MAE = Pmo eli — Pmcasi 7
i ;:1 | Prodel | @)
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N ; Pmeasi ‘ ( )
1 N
2
MSE = N ; (Pmodeli - Pmeasi) )

N 2
1 Pmodeli — Pmcasi
NMSE = — E _— 1
SE=5 — < ) 19
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E. Post-processing Load Model Parameter Values

Commonly, the event-based load model parameter values
are combined by averaging, as has been done for example in
[4], [5], [15], [18]-[20]. However, the average value of small
number of samples is sensitive to extreme values. In case of
this study, the number of samples can be considered to be
small, as due to the use of small voltage disturbances and
large random variations of the load, the estimated load model
parameter values displayed a large variance. To overcome the
issue, it is possible to include a measure of reliability (quality)
in the calculation and instead of average value to calculate a
weighted mean value K (11) from M number of event-based
parameter values [;, adding weight w; to each estimated
value.

P Yimy (wi - K)
M
D iy Wi
The reliability of load model parameter values can assumed to
be inversely proportional to the modelling error. Thus, as the
weight w;, the inverse of error ¢; is used and (12) is obtained.
The values of MAE (7), NMAE (8), MSE (9) and NMSE (10)
are used in this study as the values of ;.
M
D > U )
Dz (/&)
III. RESULTS AND ANALYSIS
A. Case Study

The case study involved identification of aggregated load
model parameters for two neighbouring 110/10 kV substa-
tions. Active approach was used for voltage disturbances. The
methods used for creating voltage disturbances are covered in
subsection II-A. The load responses of both substations were
measured simultaneously using measurement system described
in subsection III-B.

Voltage changes were induced and measurements were
taken during four measurement periods. The first measure-
ments were taken in substation 1 in February 2017 at noon
of a winter day, the temperature was around -10°C. That
measurement period is denoted in tables as ’Cold day’.
Three additional measurement sessions were conducted in
April 2017. Measurements were taken at night (around 3
am), day (around 2 pm) and in the evening (around 7 pm).
The temperatures on measured April days were near 0°C.
Respectively, the measured day periods are named ’Night’,
’Day’ and ’Evening’. The number of recorded voltage events
with a voltage deviation over 0.5% is shown in Table 1.

1D

TABLE I
NUMBER OF VOLTAGE DISTURBANCES

Substation Cold Day Day Evening Night
1 5 11 8 10
2 - 11 8 10

B. Measurement Setup

Power Quality Monitors (PQM) were used for recording
measurement data in both 110/10 kV substations. The data
includes three phase RMS values of voltage, active power
and reactive power. The sampling rate of the used PQM is
5 Hz (200 ms). The measurement probes were connected to
the measurement transformers of the primary winding of the
HV/MV transformers.

C. Comparison of Load Model Parameter Post-processing
Methods

Load models were estimated for all detected voltage events
using the least squares optimisation with objective function
(12). Next, the estimation errors defined in section II-D were
calculated. The estimated event-based load models and associ-
ated fitting errors were combined by post-processing method
described in section II-E to identify load models for different
periods of the day. The results of the post-processing algorithm
are shown in Table II and Table III. In addition to the load
model parameter values identified by using the presented post-
processing method, the average values are given in column
’Mean’ and median value in column 'Median’.

TABLE II
IMPACT OF POST-PROCESSING METHOD ON CALCULATED VALUE OF
EXPONENT Kpy

Substation Time period MSE NMSE MAE NMAE Mean Median

Cold day 1.53 1.58 195 197 206 140

| Day 144 146 160 1.61 1.77 135
Evening 1.58 158 159 159 1.62 1.60

Night 1.06 106 1.09 109 1.13 1.08

Day 1.04 105 123 123 142 1.02

2 Evening 248 243 256 253 254 227
Night 081 081 077 077 072 0.80

TABLE III

IMPACT OF POST-PROCESSING METHOD ON CALCULATED VALUE OF
EXPONENT K gy

Substation Time period MSE NMSE MAE NMAE Mean Median

Cold day 8.54 8.66 865 881 637 830

1 Day 881 9.00 9.04 9.13 936 10.00
Evening  10.00 10.00 10.00 10.00 10.00 10.00
Night -3.07 -2.85 -5.67 -5.67 -7.58 -10.00

Day 882 884 883 883 883 884

2 Evening  10.00 10.00 10.00 10.00 10.00 10.00
Night 10.00 10.00 10.00 10.00 10.00 10.00




According to Table II and Table III, the error normalization
(MSE vs NMSE and MAE vs NMAE) has only a negligible
impact on K, values. In Table II, the difference caused by
normalization is below 0.05. In case of K, (Table III) the
normalization of error has a larger impact, K, values differ
by up to 0.22.

The identified load model voltage sensitivities in Table II
differ in case of substation 1 *Cold Day’ measurements over
0.4 units if absolute error (MAE, NMAE) and squared error
(MSE, NMSE) based values are compared. Thus, in case of
the analysed data, the impact of error type is larger than
the impact of error normalisation. In Table II, the voltage
sensitivities calculated using squared error (MSE and NMSE)
based weighting are mostly lower than absolute error (MAE,
NMAE) based values. The largest parameter values were
obtained by mean value calculation, indicating that samples
with high error had higher estimated load model parameter
values. The median values were for all measurement periods
lower than mean values. The differences caused by the choice
of calculation methods were largest for daytime measurements
of K. In case of K, (Table III), the largest differences occur
for substation 1 for ’Night’ and *Cold day’ measurements.

D. Single Event Based Load Models and Identified Load
Models

The main challenge faced during the analysis was the
randomness of load: the natural load variations were large
compared to the voltage changes. This caused large variations
in estimated load model parameter values illustrated by box-
plots Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

In subsection III-C it was found that the differences between
calculation methods were largest for daytime measurements
of K, and 'Night’ and "Cold day’ measurements of K, at
substation 1. According to Fig. 1, Fig. 2, Fig. 3 and Fig. 4,
the mentioned daytime periods displayed a high variability of
estimated event-based load model parameter values. Thus, the
results indicate that the robustness of the calculation methods
differs. Furthermore, in case of small number of samples, the
weighted mean value calculation (method proposed in section
II-E) may provide better results than averaging.
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Fig. 1. Estimated real power exponent K, values of substation 1 and K.,
values identified by post-processing (using MSE and MAE for weights).

However, the downsides of using estimation error as the
inverse of weight is that in case of extremely low error or zero
values of power, numerical issues may occur. Some samples
could obtain too high weights in comparison to other measured
values, leading the calculated values away from the best
estimate of the load model. A possible way to overcome these
issues is to determine boundary values for the sample weights
and validating the weight values during calculations. Too low
or high values of determined weights could be replaced by
boundary values.
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Fig. 2. Estimated real power exponent Ky, values of substation 2 and Ky
values identified by post-processing (using MSE and MAE for weights).
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Fig. 3. Estimated reactive power exponent K4, values of substation 1 and
Ko values identified by post-processing (using MSE and MAE for weights)
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Fig. 4. Estimated reactive power exponent /4, values of substation 2 and

Ko values identified by post-processing (using MSE and MAE for weights).



E. Identified Load Characteristics

Considering that Mean Square Error was used for defining
the load model estimation problem, the post-processing results
with MSE based weighting are given in the following Table
IV and Table V. In addition to exponent values presented
in previous subsection, ZIP model parameter values are pre-
sented. The ZIP model was also estimated for each event and
for identifying ZIP load models for the day periods, the post
processing method described in II-E was used.

TABLE IV
ESTIMATED REAL LOAD MODEL PARAMETERS

Exp. model ZIP model
Substation Time period Kpy Kp. Kpi Kpp
Cold day 1.53 1.12 -0.69 0.57
1 Day 1.44 0.96 -0.49 0.53
Evening 1.58 -0.16 1.89 -0.73
Night 1.06 0.28 0.51 0.21
Day 1.04 0.77 -0.52 0.75
2 Evening 2.48 -0.03 248 -1.45
Night 0.81 0.58 -0.35 0.77

Table IV indicates an intra-day load model variability. Based
on the identified load model parameter values in Table IV, the
load real power has the largest parameter K, values during
the evening and lowest values during the night. The K, value
of 'Cold day’ is higher than the value of ’Day’. Thus, the
load model parameter K, is likely to have a temperature
dependency.

The K, values in Table V are at evenings equal to the used
boundary value of 10, indicating a possibly unsuitable load
model structure. In addition, the *Night’ value of substation 1
differs significantly from the rest of the values, which may be
caused by the low total reactive load during the night that was
highly sensitive to random load changes. In Fig. 3 the event-
based load model values have high variance, another indicator
that the reliability of the identified *Night” value of substation
I is low.

TABLE V

ESTIMATED REACTIVE LOAD MODEL PARAMETERS

Exp. model ZIP model
Substation Time period Kqv Kq. Kgi Kgq
Cold day 8.54 7.80 -3.54 -3.26
1 Day 8.81 6.13 -1.03 -4.10
Evening 10.00 6.50 093 -6.43
Night -3.07 -2.11 -0.11 3.22
Day 8.82 458 021 -3.79
2 Evening 10.00 640 129 -6.69
Night 10.00 8.37 -0.62 -6.75

IV. CONCLUSION

The paper presented a novel method for post-processing
event-based load model parameter values. It was found that

the results of the method depend on the used measure of
error. The results also indicated that the normalization of the
used error has smaller impact on the results than the type
of error (absolute error or squared error) used. The method
provided results that differ from commonly used average value
calculation. Further work is required to properly assess the
usability of the presented method and to determine suitable
boundary values for the sample weighting.

The methodology and results of a conducted case study were
presented. The results indicated that the voltage sensitivity of
the measured load is temperature dependent and has highest
real power parameter K, values during the evening and
lowest during the night. The reactive load was found to be
highly voltage dependent, the values of estimated reactive
load model parameters were in some cases equal to the
higher boundary value. Further measurements are required to
determine a reliable load model for the reactive loads of the
measured substations.
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Abstract—This paper presents the results of a measurement-
based load model estimation study, which was conducted in
a distribution network with high penetration of distributed
generation. The main goal of the study was to determine the
impact of distributed generation on the estimation of exponential
load models. The required voltage changes were induced using
an on-load tap changer and measurements were taken using
a power quality monitor. The exponential load models were
estimated from transformer measurements (apparent load) and
by combining power transformer measurement data with SCADA
data (net load). Equations for conversion between apparent and
net load model are presented and compared to load models
estimated from measurement data.

Index Terms—distributed generation, exponential model, load
modelling, static load models

I. INTRODUCTION

Three different methodologies are in use for load modelling:
component-based, measurement-based and the combination
of component-based and measurement-based. In case of the
component-based load modelling approach, the aggregation
of load component models is used to identify the model of
the aggregated load. In case of measurement-based approach,
measurement data is used for load model estimation. Typi-
cally, the load model estimation involves measurement data
pre-processing (for example filtering), estimating the model,
validating model and post-processing the results. In some
cases, data analysis stages may be repeated if obtained results
do not meet the required conditions. To estimate the voltage
characteristics of the aggregated load by measurement-based
approach, voltage changes need to occur. Either naturally
occurring [1], [2] or induced [3]-[5] voltage changes can
be used for measurement purposes. In this paper, an active
measurement-based load modelling approach is used. The
required voltage changes are induced by on-load tap changer
switching and measurements are taken via power quality
monitor (PQM) and SCADA system.

One way for modelling aggregated load, which includes
wind turbines, is to use a composite load model that consists of
static load model and an induction machine (or two in parallel)
[6]-[8]. In [6] different configurations of composite load
model are discussed and compared for modelling aggregated
load considering distributed generation. In [7], [8] methods
for the estimation of composite load model parameters are
presented and analysed. Another way is to model the voltage

sensitivity of the aggregated load by static characteristics as
was done in [9]. The mentioned paper focuses on load model
estimation by the use of smart transformer. However, the
impact of distributed generation on apparent voltage sensitivity
of the load was discussed as well. In this paper, exponential
load model, similarly to [9], is used for modelling aggregated
load.

The introduction section of the paper is followed by four
main sections. In section II, estimated load models and used
measurement data processing methodology are explained. The
conducted case study is described in section III. The results
of the case study and discussion of the results is presented in
section IV. The main results of the paper are summarised in
section V.

II. THEORETICAL BACKGROUND

A. Measurement Data Pre-processing

The induced voltage changes were detected by using an
algorithm described in [10], which was also used in [5].
The detection algorithm is based on comparison of average
values of two sets of measurement data. The compared datasets
with n samples are taken consecutively, average values of the
datasets are calculated, and the voltage change is calculated
using (1).

Votd/n — Vpew/n

AV =
Voia/n

-100% (1)

where V4 and V,,,, are the sum of n old and n new samples,
respectively, and n is the length of the averaging window.
The value of AV is compared with the chosen event
threshold value. If AV is larger than the threshold value, the
voltage difference indicates a voltage event. The first sample
of the second vector is considered as the start of the event.
The index of that sample is used for determining the time of
the event. According to [1] and [11] small voltage changes of
0.5% can be used for load modelling. In this study, on-load
tap changer with 1.78% step was used, thus 1.5% was used as
event threshold. The averaging window length of 20 seconds
was used in [10]. In this paper, n value corresponding to 40
seconds was chosen based on event detection results.



B. Exponential Load Model

The exponential load model can be described by (2) and
3).

Pgxp = Py(V/Vo)Rre 2

Qexp = Qo(V/Vp) K 3)

where Py and @ are real and reactive power of the load at
pre-event voltage Vj respectively. K, and K, are exponents
describing the voltage characteristics of the real and reactive
power of the load.

C. Load Model Estimation

The load model estimation problem can be formulated based
on minimisation of mean square error (5) and expressed by
(4) [5]. The non-linear least squares (NLS) formulation of the
problem is a common solution for load model estimation from
measurement data. It has been used for example in [1], [2], [5],
[12]. A comparison of NLS, Genetic Algorithm and Simulated
Annealing is provided in [12]. Following equations are given
for real power, reactive load models can be estimated similarly.

1
min M SE = min N Z(Pmodeli - Pmea,Si)Q (4)

i=1
For estimating exponential load model parameters, following
model equation and boundary conditions can be used for (4).

. modeli = PO(V;',/‘/O)KPU

e —10.0 < K, <10.0

e —10.0 < K¢ <£10.0

D. Estimation Error

The modelling error of the estimated characteristics is
quantified by Mean Absolute Error (MAE) (5) and Mean
Square Error (MSE) (6). Mean Absolute Error (MAE) (5) has
been used in [13], [14] and MSE in [12]. The MSE values in
[12] were in range 1-1075...10 - 10~°.

For both measures of simulation error, the calculation is
done based on measurement samples P,cqs; and modelled
values Pp,ode1, Where i is the index of the sample from 1...V.

N
1
MAE = — Rno eli — Rnaasi 5
I ;\ del | (&)
1 N
) _ 2
MSE = N Z (Pmodeli - Rneasi) 6)

i=1
E. Expected Impact of Distributed Generation

If the voltage and power changes are relatively small, the
voltage sensitivity of the exponential load model for time
instance t; can be expressed by (7) [15].

P(tk)(_P<tI;—l)
Ptk—1

V(tk)=V(tr_1) @
V(tk—1)

K, =

where V (tx) and P(t) are voltage and power measured at
time ¢4, and the previous samples are V (¢;—1) and P(t;_1).

If a significant amount of distributed generation is connected
to the load feeder, the apparent voltage sensitivity of the
net load of the feeder differs from the load characteristic.
The impact of distributed generation (DG) on the voltage
sensitivity of net load was discussed in [9]. It was assumed
that the DG is operating at unity power factor (QQg = 0). Also,
that the power generated by DG P is smaller than the load
of the feeder P;: Ps < Pr, thus the net load of the feeder
was (8).

Py=P,—P5z>0 (3)
The normalised voltage sensitivity K, r, of load Py, was (9)

and the active power of the DG was insensitive to voltage (con-
sidering its contribution to losses negligible), i.e., K}, ¢ = 0.

K _AP/P
N

In such case, the net feeder load changed for a voltage
disturbance AV as follows:

®

AP = APy, = K, 1.(AV/V) Py 10)
Using (7), (9) and (10), the apparent feeder load sensitivity
was determined to be (10) [9].

_ AP/P, Py,

K, = =Ky ——— 11
P AV/V() po.l P, — Pg an

From (11) it is possible to derive (12), which can be used

for calculating voltage sensitivity of load K, r. If apparent

voltage sensitivity K, load power P;, and generated power

P are known.

P — Pg
Py,

III. CASE STUDY

Kp’U,L = Kpu . (12)

A. Studied Section of Distribution Network

The measurement-based case study was conducted in a
distribution network section which supplies 13 755 cus-
tomers. Based on average energy consumptions of March (of
2013...2015), the typical load division by customer categories
is:

« Residential 33.2%

o Agricultural 2.3%

« Service and business 36.9%
o Industry 21.0%

« Public 6.6%

The average load of the customers, connected to the measured
feeder, was during the measured period 7.4 MW. 6.7 MW of
distributed generation is connected to the same feeder: 2 wind
turbines (2,3 MW and 2,0 MW), and a 2,4 MW combined
heat and power plant (CHP). The DG units are operated in
fixed cos¢ mode.



B. Measurement Setup and Induced Voltage Changes

The measurement probes of the Power Quality Monitor
(PQM) were connected to the voltage transformer (VT)
of the section and to the current transformer (CT) of the
transformer feeder. The load was around 100 A, thus the CT
(2500/1) was under-loaded, which may have had a negative
impact on the accuracy of current measurements. The PQM
recorded three phase RMS values of voltage, active power and
reactive power with sampling rate of 5 Hz (time-step 200 ms).

The voltage changes were induced for load model esti-
mation by on-load tap changer (OLTC) switching. The used
OLTC has 16 tap positions with 1.78% steps. During the study,
voltage variations were limited by the DSO to 10.2 ... 10.8
kV. The voltage levels induced using OLTC for the study
are shown in Fig. 1. At the beginning and at the end of the
measurement period, the voltage was kept at normal level.
During the measurement period, the voltage was switched to
lower and higher level and each level was kept 10..15 minutes.
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Fig. 1. Average RMS voltage at measured substation.

IV. RESULTS AND ANALYSIS
A. Measured Voltage and Power

The measurements were taken on March 5, 2017 on a windy
afternoon in time range 12:30...14:30. Fig. 2 displays the volt-
age and feeder power measured by the Power Quality Monitor
(PQM). The measured data indicates that the measured net
load is not sufficient for fully understanding the processes
taking place in the feeder.

The SCADA data was acquired for determining the gen-
erated power Pge, of the distributed generation units and
was plotted in Fig. 3. The Pge, decreases and increases
twice by around 2 MW. Based on Fig. 4, the Pg.,, decreases
occur 5...8 minutes after voltage increase, indicating the over-
voltage protection of one wind turbine may be configured
falsely. This theory is supported by the fact that, with a similar
delay, voltage decreases caused restoration of same amount of
generation capacity. Adding the generated power Pge,, to net
load of the transformer Prjqy, the load Pp,.q is acquired.
The load Pp,.q has peaks at the changes of Pge,, which are
caused by sampling rate mismatch: the SCADA data was with
lower sampling rate than the PQM.

Active power (MW)
[ S]

10.1
14:00 14:15 14:30
Mar 05, 2017

0
12:45 13:00 13:15 13:30 13:45

Time

Fig. 2. Measured voltage and active power (at substation).
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Fig. 3. Measured net load of the transformer Pr.q,, total power of DG units
Pgen and calculated load Proqq-

The 6 voltage changing events are marked in Fig. 4 with
vertical black lines. As the events are at a different time than
the wind turbine switching events (rapid changes in Pg.,,), the
peaks in Pr,qq and rapid changes of Pge, should not have
a significant negative impact on the accuracy of load model
estimation results.
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Fig. 4. Induced voltage events (marked by vertical black lines).



B. Estimated Load Characteristics

The parameters of exponential load models were estimated
for each voltage event, both for load Pr,.q and net load
Prran. The net load model represents aggregated model,
which includes distribution generation. Fig. 5 shows that the
net load has significantly higher voltage sensitivity than the
actual load (without distributed generation). This results is
logical as in both cases, a change in voltage would cause the
load to increase or decrease by the same amount of power.
However, in the presence of distributed generation, the net
load value is decreased, which means a larger relative load
change would be seen at the transformer.

9 T T T T T T

8 | Load
I <t load

pv
=)

Exponent K

Event

Fig. 5. Exponential load model of load and net load (includes load and
distributed generation).

The numerical values of event based load model estimates
are presented in Table I. The mean absolute modelling error
(MAE) of the load is 4...10 times smaller than the modelling
error of net load. The values of mean square error are
comparable to [12].

TABLE 1
ESTIMATED LOAD MODELS

Load Net load
Event K, ; MSE (-107°) MAE K, MSE (-1073) MAE
1 074 17 0011 511 19 0.105
2 1.24 10 0.008  2.92 1.9 0.034
3079 14 0.009  8.11 14 0.093
4 062 9.9 0.008  1.30 1.3 0.030
5 065 8.1 0.008  7.64 11 0.084
6 1.03 4.7 0.006  8.15 35 0.046

In section II, equation (11) was presented for calculating
the voltage sensitivity of net load from voltage sensitivity of
load. In Fig. 6, the result of calculation with (11) is plotted.
It is possible to notice that in case of events 1, 2 and 4, the
calculated values are close to the value, which was estimated
from measurement data. Event 1 was voltage rise from normal
to high with high generation Pge,. 2 and 4 had lower Pgep,
level and voltage was decreased from high to low. Events 3,
5 and 6 had lower calculation accuracy, all three had higher

level of Pg.y,. Thus, the accuracy of (11) may be lower if the
penetration of distributed generation is higher.

12

[ Load
10 I Nt load 1
I Nt load (calc)

z 8 1
i~
2 6 -
o
o
<
o 4t ]
2 .|

Event

Fig. 6. Exponential load model of load and net load (includes load and
distributed generation). Net load exponent K, (purple) calculated using (11)
from load exponent (orange).
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Fig. 7. Exponential load model of load and net load (includes load and
distributed generation). Load exponent K, 1, (purple) calculated using (12)
from estimated net load exponent (black).

Similarly, in section II (12) was presented for calculating
the voltage sensitivity of load from the voltage sensitivity of
the net load. In Fig. 7, the results of the calculation are shown.
The accuracy of calculated values is similar to the previous
calculation: parameters of events 1, 2 and 4 are close to the
estimated values of parameters.

V. CONCLUSION

This paper presented the results of a measurement-based
load modelling study that was conducted in a distribution
network with a high penetration of distributed generation. It
was shown that the distributed generation units increase the
voltage sensitivity of the net load (aggregated load seen as
the load of the transformer). It was found that the modelling
accuracy of the net load is lower than the modelling accuracy
of total load, if exponential model is used for modelling the
aggregated load. The results of the study indicated that for



approximate assessment of the impact of distributed generation
on exponential load model, equations (11) and (12) may be
used.
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Abstract—This paper presents an approach for clustering
aggregated loads based on load class energy consumption time
series, and choosing representative loads for each group. The
described approach was applied in a transmission system load
modelling study. The goal of the study was to choose rep-
resentative loads for measurement-based modelling. The work
was motivated by the limited number of available measurement
devices and available personnel for data processing. The monthly
energy consumption of each load class was known for each
aggregated bus load. After measurement data pre-processing the
larger loads were clustered using K-means algorithm, and smaller
assigned to clusters. Representative loads were selected from each
cluster.

Keywords—clustering; databases; data mining; energy con-
sumption; load modeling, smart metering

I. INTRODUCTION

In power system calculations loads are typically mod-
elled by aggregated bus loads. The parameter values of the
aggregated load models are identified using measurements,
survey results, literature, experience or have an unknown
source [1], [2]. In general, there are three main ways for
load modelling: measurement-based, component-based, and
combined approach. In case of the measurement-based method
load responses to naturally occurring [3], [4] or induced [5]—
[7] voltage changes are analysed to estimate the aggregated
load models. Typically, the load model estimation involves
measurement data pre-processing, estimating the model, vali-
dating model and post-processing the results [8], [9]. In case
of some distribution and transmission networks, the number
of available measurement devices with sufficient measurement
frequency may be limited. The procedure presented in this
paper could be used for selecting the representative loads,
which are modelled using measurements. The estimated mod-
els could be applied to the rest of the loads belonging to the
same clusters, if the estimated models match the clustering
results.

In case of the component-based load modelling, the ag-
gregation of load component models is used to identify the
model of the aggregated load. It is a convenient method for
calculating load models of a large number of buses, when
there is sufficient customer data and statistical data available.
However, the component-based models should be validated
by measurements to achieve the best results. In such case the

This work was mainly funded by the Estonian TSO, Elering AS, with
additional support of Tallinn City Council Scholarship.

methodology could also be considered to be a combined ap-
proach: measurement-based and component-based method are
both used. One possible method for validation is to first group
substations based on load class compositions. Next, to choose
a few representative substations from each group. Finally, to
estimate the models of these loads from measurement data, and
to compare the models estimated by different approaches. For
easy comparison of some models (e.g. ZIP models), conversion
of load models is reasonable [10], [11]. The results of the
analysis could also help to identify load classification errors
or confirm the classification logic. The selection and detailed
analysis of representative loads would enable a more efficient
use of measurement devices and manpower.

The previous paragraphs described how the clustering of
aggregated loads and selecting representative loads for each
group could be used when load modelling is conducted. In this
study, the monthly energy consumptions of load classes were
known for the aggregated loads, which were to be modelled.
Thus, it was decided to use that data for clustering the bus
loads. The clustering of substations by monthly energy con-
sumptions is similar to grouping daily load profiles, which is
used for customer classification and type profile identification.
The main difference is the added dimension of load class
composition: instead of one energy consumption value for
each time instance, there are now several (five) load class
contributions. In this paper it is shown how to take into account
the load class composition information when clustering time
series.

The clustering of time series of daily consumption (daily
load profile grouping) has been done in [12], [13] using K-
means clustering (Lloyds’ algorithm) [14]. A more advanced
approach is used in [15], [16], where the dynamic time
warping is used, which is fundamentally similar to Lloyds’
algorithm, but in addition allows for matching time shifted
series. The K-means algorithm has also been applied to prob-
lems, which have parameters with different physical quantities.
For example, in [17], [18] the K-means clustering was used for
clustering wind power ramp events based on the parameters
of ramp events (rise time, fall time, peak power).

The introduction section of the paper is followed by three
main sections. In Section II, the measurement data processing
procedure is presented and explained. In Section III, the data
processing procedure presented in Section II is applied on
measurement data, which covers 132 aggregated loads. The
main results of the paper are summarised in Section IV.

978-1-7281-9479-0/20/$31.00 © 2020 IEEE



II. DATA PROCESSING PROCEDURE & APPLIED METHODS

The data processing procedure was motivated by several
factors. Firstly, the amount of customer data available for
the TSO (DSO owns the end customer database) was highly
limited. Secondly, the number of employees available for data
processing was also limited. Thirdly, the available measure-
ment devices were only sufficient for measuring only a fraction
of the substations. The aim of the data processing procedure
was to group (cluster) aggregated loads with similar time series
of load class compositions, and to choose representative loads
from each cluster. These substations would be analysed in
more detail during the load modelling study. The selection
of representative loads would enable a more efficient use of
measurement resources, and employees.

A. Data Processing Procedure

The applied data processing procedure can be described by
the following steps:

1) Data pre-processing.

2) Substations with the largest load and with medium load
clustered using K-means algorithm.

3) Substations with the smallest load assigned to clusters
with the closest centre.

4) Representative substations selected for each cluster.

B. Data Pre-Processing

1) Measurement Data: The monthly energy consumption
data of load classes was provided by a distribution system
operator, which classifies the consumers into 5 classes:

o Class 1: Residential
o Class 2: Agricultural
o Class 3: Commercial
o Class 4: Industrial

o Class 5: Public

The acquired meter data covered 33 months (from January
2013 to September 2015). The energy consumption of a
substation, by load classes, is shown in Fig. 1. The years are
marked with different markers (2013 by *, 2014 by O and
2015 by X), and the load classes with different colours. The
figure indicates that the energy consumption of the substation
has a seasonal pattern, and the pattern differs for load classes.
Thus, the load class composition also changes each month.

2) Decreasing Length of Time Series: The input data in-
cludes 33 months, thus the first 9 months of the year have
3 values and last 3 months only 2 values. To even out the
impact of months, a representative year (12 months of values)
was calculated. The months of different years were matched
and averaged to find the mean energy consumption for each
month and load class.

3) Normalising Load Class Composition Data: The av-
eraged monthly load class compositions were normalised to
enable matching of substations with similar load class compo-
sitions. The normalisation was done by dividing each monthly
average load class energy consumption with each month’s
total energy consumption. This was done separately for each
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Fig. 1. Acquired monthly energy consumption data of a substation, disag-
gregated by load classes (C1...C5).

substation. The substation energy consumption data shown in
Fig. 1 was calculated to Fig. 2.
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Fig. 2. Load class compositions of representative year after normalisation
(values stacked).

C. K-means Clustering of Load Composition Time Series

1) K-means Clustering Algorithm: The K-means clustering
algorithm, which is also known as Lloyd’s algorithm [14], is
used for classification of objects into groups (clusters) based
on properties (attributes). In this paper, the substation loads
are the objects and monthly load class compositions are the
attributes. There are 5 classes and 12 monthly load class
compositions, thus each load has 60 attributes.

The K-means algorithm is based on the minimisation of total
squared Euclidean distance between the objects and centres of
the assigned clusters. This objective can be written as (1), the
steps of the K-means algorithm are explained in detail in [12].



K
min(E) = min (Z Z d(x,zi)> (1)
i=1 z€C;

where K is the number of clusters, z; is the centre of cluster
C;, and d(z, z;) is the Euclidean squared distance between
object = and cluster centre z;.

The Euclidean distance squared d(z,z;) between object
x with attributes 1, s, ...z, and centre of cluster z; with
attributes 21,1, 21,2, ...21,n 18 (2).

d(z,z1) = (1 —211)° + (T2 —212)> + oo (T — 21.0)° Q)

Several methods are used for choosing the value of K, the
number of clusters. [12] determined the analysed number of
clusters by using equation 2 < K., < y/m, where m is
the number of objects in database. Next, the clustering was
conducted for K = 2...K,, 4., and based on Silhouette Global
Index (SGI) the best solution was chosen. SGI is explained in
the following point 2).

Another approach for choosing the value of K is based
on the sum of squared Euclidean distance (SSE) plot. When
the number of clusters increases, the SSE decreases, thus this
plot is a diminishing plot and may look similar to an arm.
The K value is chosen from the point of the figure, which
resembles an elbow. That point usually represents where we
start to have a diminishing return of increasing K [19].

2) Evaluating Clustering Results by Silhouette Global In-
dex: The results of K-means clustering can be validated using
Silhouette Global Index (SGI), which is one of the most used
internal tests [12]. In case of SGI, the silhouette value s; of
object 7 is defined as (3).

si = (b; — a;) /maz(a;, b;) ®)

where b; is the minimum mean distance from object i to
objects belonging to other clusters, minimised over clusters;
a; is the mean distance between object 7 and the other objects
of the same cluster j.

The silhouette values of the objects s; are averaged to find
the local silhouette coefficient .S; (4), which describes cluster

j.
S =(1/n;) Y njsi
i=1

where n; is the number of objects in cluster j.
The Silhouette Coefficient SC' is calculated by averaging
the local silhouette coefficients S; (5) [12], [17], [20].

SC=1/KY KS;
Jj=1
[21] proposed the following interpretation of silhouette
coefficient SC values:
o < 0.25: No substantial structure has been found.
e 0.26...0.50: The structure is weak and could be artificial.
e 0.51...0.70: A reasonable structure has been found.
e 0.71...1.0: A strong structure has been found.
The same interpretation has previously been used for example
by [12], [17], [18].

(C))

(&)

D. Assigning Non-Clustered Loads to Existing Clusters

The smallest loads which were not in the clustered dataset
were assigned to the cluster with the closest centroid (centre).
The centroids of the clusters were calculated during the
clustering process. Next, the total squared Euclidean distance
of each (previously not clustered) load from each centroid of a
cluster was calculated. The cluster with the smallest sum was
assigned to the load.

E. Selecting Representative Loads

In order to validate the clustering results with measure-
ments, the largest loads of each cluster were identified. Next,
the sum of squared Euclidean distances was calculated for
these largest loads, and the loads with smallest SSE were cho-
sen as the representative loads. The larger loads were chosen
as representative loads, because aggregated load behaviour of
larger number of customers is closer to statistical than the
behaviour of smaller number of customers. This means that
the stochastic load variations of larger aggregated loads tend
to be proportionally smaller than those of the smaller loads.
Also, the larger loads are expected to have a larger impact on
the transmission system modelling results, thus the accuracy
of those load models may have a larger impact on network
simulations.

III. CASE STUDY & RESULTS
A. Input Data & Pre-Processing

The measurement data provided by the distribution system
operator covered 33 months. For each aggregated load, the
monthly energy consumption of each load class was given.
This data was averaged month-wise to obtain 12 month long
time series. The time series were normalised by monthly total
energy consumption. This way the sum of load classes was
100% for each month. 92 aggregated loads with highest energy
consumption were taken from the whole dataset (132 loads)
for clustering. These 92 loads consume 96% of total energy
consumption of the analysed DSO. Rest of the loads (40) were
assigned to the cluster with the closest centroid.

B. K-means Clustering and Selection of K

The K-means clustering was implemented using squared
Euclidean distances d(x,z;) (2) as the measure of distance.
The sum of squared Euclidean distances was minimised (1)
by using MATLAB to acquire the results. The clustering
was conducted for K = 2...40. For each value of K, 100
replications were done and the best solution was chosen.

The sum of squared Euclidean distances decreases with the
increase of K, the total number of clusters. This characteristic
is illustrated by Fig. 3. According to the figure, the sum
decreases at a rapid rate until X = 5. After that point the
returns of increasing K decrease. Due to the smoothness of
the graph, it is impossible to clearly distinguish the elbow
point. However, it can be detected that after K = 15, the sum
decreases more slowly, compared to the proceeding part of
the graph. Thus, the optimal number of clusters K should be
between 5 and 15.
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Fig. 3. Sum of squared Euclidean distance for different number of clusters

Next, the Silhouette Coefficient (SC) (5) was calculated.
Fig. 4 displays the SC values for K = 2...40. According to the
figure, increasing K over 15 has negligible impact on SC. This
result matches the K = 5...15 range identified by analysing
the sum of squared Euclidean distances. Taking into account
both results, it is reasonable to choose a K value below 15.
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Fig. 4. Silhouette coefficient for different number of clusters K

Fig. 5 displays SC values for K = 5...15. The figure
indicates that a reasonable structure (SC = 0.51...0.70) may
have been found with 5,6 and 10...14 clusters. Comparing
the sum of squared Euclidean distances (Fig 3) at 5 and 10
clusters, it is clear that at 10 clusters the sum would be cut
to nearly half. The difference between 10 and 14 clusters is
significantly smaller, for this reason the number of clusters
was chosen to be 10. At K =10, SC = 0.52.

C. Clustering Results

When substations are clustered into 10 groups, it is possible
to obtain silhouette values s; (3) corresponding to Fig. 6. This
result is satisfactory as all silhouette values are positive and
several substation loads have high values.

However, once the smaller loads are assigned to existing
clusters, the structure weakens. The value of SC' drops from
0.52 to 0.42, which indicates a weak and possibly artificial
structure. This weakening of cluster structure is also visible

Silhouette coefficient
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Number of clusters

Fig. 5. Silhouette coefficient for 5...15 clusters
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Fig. 6. Silhouette value of clustering results (92 largest loads).

in Fig. 7, where several loads have negative silhouette values.
When all the 132 loads were clustered, instead of following the
procedure with assigning smallest loads, the result was Fig. 8.
The value of SC was 0.45 for that clustering, which is about
5% better result than the SC' value after assigning smaller
loads. Still, the SC' is below 0.51, and the cluster structure is
weak.

IV. CONCLUSION

This paper presented a procedure for grouping aggregated
loads based on energy consumptions of load classes in Sec-
tion II. In addition, the procedure involved identification
of representative loads for each load cluster. The identified
representative loads could be useful for selecting measurement
locations or loads for analysis.

According to the Silhouette Global Index value, the cluster-
ing result of 92 largest loads had a reasonable structure. After
assigning the smaller aggregated loads to the clusters with the
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Fig. 7. Silhouette value after assigning smaller loads to closest cluster centres.
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Fig. 8. Silhouette value when all 132 loads would be clustered instead of
assigning smallest loads to closest centres.

closest centre, the Silhouette Coefficient decreased to 0.42,
which indicates a weak and possibly artificial structure. When
the clustering was done for all 132 loads, the best solution had
a silhouette coefficient value of 0.45 (5% better than the result
of assigning smallest loads). These results indicate that a better
procedure could be the following: 1) data pre-processing as

described; 2) clustering of all loads; 3) filtering largest loads
and calculating for each cluster the centre of largest loads
(or even a weighted center, based on energy consumptions of
loads); 4) choosing the representative loads as described in this
paper. That way a better structure could be detected, and still
the largest loads would have a higher impact on the selection
of representative loads.
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Abstract

This paper presents several methods for performing two types of static load model con-
version: exponential to ZIP & ZIP to exponential model conversion. In general, these
conversions are inaccurate due to non-equivalence of exponential and ZIP (second-order
polynomial) models. A numerical analysis is conducted using generated datasets of load
models to analyse the error and to compare the accuracy of the presented methods. The
results of the analysis indicate that the optimal selection of conversion method depends
on a number of factors, including normalisation of load models, ZIP model type (accurate
or constrained) and expected use of the converted model. In addition, a case study is con-
ducted to analyse the impact of conversion error on load flow results. The results of the
case study indicate that a significant difference in load flow results can occur when the load
models are converted. Recommendations for conversion method selection are given in the

1 | INTRODUCTION

In the context of this paper, (static) load models are considered
to be equations describing static voltage characteristics of the
loads. An overview of existing load models is given in [1] and
[2]. According to survey results presented in [3] and [4], the
most common static load models are constant power, constant
current and constant impedance model, which are followed by
exponential and polynomial (i.e. ZIP) load model. In real-world
applications, exponential and (second-order) polynomial load
model are commonly used [5], and ate standard models used for
dynamic studies in established stability programs (e.g. PSS/E,
PSLE, TSAT and ETMSP packages) [6]. Similarity of PSS/E and
PSCAD load models to exponential and polynomial load model
is discussed in [7, 8], where [9] and [10] are used as main refer-
ences. In addition to usage in load modelling, exponential and
ZIP model are used for assessing the potential of conservation
voltage reduction (CVR) [11-14].

The parallel use of exponential and ZIP model causes in
some cases the need for load model conversion [3, 8, 15, 16].
Firstly, load model conversion may be required when an exist-
ing power system model is used for constructing the system

discussion section of the paper.

model for another software, and the load models of the soft-
ware packages differ [8]. For conducting some power system
model conversions, commercial tools are available (e.g. PSS®E-
PSCAD Network Data Conversion Module, E-TRAN Runtime
Library for PSCAD). Secondly, the exponential to ZIP model
conversion can be used for simplifying the load model aggrega-
tion stage in component-based load modelling.

The ZIP models of load components can be accurately aggre-
gated by calculating weighted sum of ZIP models as is done in
[17-19]. When the known models of some load components are
in exponential form, these models need to be converted to ZIP
models to calculate the aggregated load model (using weighted
sum). Thirdly, the conversion of ZIP models to exponential
models is useful for comparing load models [3, 16], and plotting
load model changes in time [19, 21]. In case of load model com-
parison and plotting, the exponential model is preferred due
to smaller number of parameters: the exponential voltage char-
acteristic is described by one parameter, while ZIP model has
three parameters, in addition to common initial /nominal power
and voltage parameters.

The load model conversion methods are rarely described
and the conversion error is commonly neglected [8]. Still, an
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analytical method for exponential to ZIP model conversion is
described in [22] and is analysed in [8]. Analytical solution of
the method is presented in Section 3.3.1 and is denoted as
‘Analytical method AM1’. A second method for conducting the
same conversion is presented and analysed in [8]. The method is
described in Section 3.3.2 and is denoted as ‘Analytical method
AM?2’. In addition, a new formulation of method AM2 is pre-
sented for converting exponential models to constrained ZIP
models. In case of constrained ZIP model, the parameter val-
ues are limited to range 0...1. In Section 3.3.3, an equivalent
equation system for ‘Analytical method AM3’ [8] is presented
and some detivation errors present in [8] are corrected. In [16]
methods for second-order polynomial (i.e. ZIP) to exponential
load model conversion are described and analysed. The analyti-
cal method described in [16], and in Section 3.2, is used for con-
version from ZIP model to exponential modelin [3, 16, 19]. The
descriptions of optimisation-based methods presented in [8, 16]
are generalised in Section 3.1 for handling different load model
approximation situations. The optimisation-based conversion is
used to provide a benchmark for evaluating the performance of
other methods. The conversion methods for both conversion
directions are presented to give a comprehensive overview of
this load model conversion pair.

In case of load model conversion, the main aim is to min-
imise the conversion error to approximate the original load
characteristic as well as possible. It is assumed that the input
model is accurate. The conversion between exponential and
ZIP load model is, in the general case, not accurate. Excep-
tions are load models with constant impedance, constant cur-
rent and constant power, which have equivalent exponential and
ZIP models. Numerical analysis is used for analysing the conver-
sion error that occurs when presented conversion methods are
used. It is shown that the load model conversion error depends
on the input load model parameter values, used method, cho-
sen voltage and the voltage sensitivity of the characteristic.
When the converted load model is used in a power system
model, the conversion error leads to a shift in power flow
results. This shift can lead to inaccurate power system analy-
sis results, which may lead to wrong decisions. The impact of
conversion error on power flow results is illustrated by a case
study.

The paper is divided into eight sections. The introduction
is followed by Section 2, where exponential and ZIP load
model are described. In addition, in Subsection 2.2, measures
of conversion error are defined. In Section 3, methods for
conversion are presented. The load model conversion error
of the presented methods is analysed in two sections: Sec-
tion 4 and Section 5. The results ate divided between the sec-
tions based on conversion direction: Section 4 deals with ZIP
to exponential conversion and Section 5 with exponential to
ZIP conversion. The impact of load model conversion on load
flow results is analysed in Section 6. Finally, the main results
of the study are discussed and summarised in Section 7 and
Section 8.

2 | LOAD MODELS AND CONVERSION
ERROR

2.1 | Exponential and ZIP load model

In case of second-order polynomial (i.e. ZIP) and exponential
load model, the models can be defined using the nominal value
of voltage and power [8, 16, 20, 23] or initial values [1, 21, 23,
24]. The load models are generalised by using base voltage 2,
base active power P, and base reactive power Q.

2.1.1 |
model

Second-order polynomial (ZIP) load

The second-order polynomial load model, also known as a ZIP
model, can be described by (1) subject to (2). Reactive load is
represented by similar equations (3) and (4).

2
Pyp =Py - [Kz @)+ K- 0fv) + ](P]: M
K2+K]+Kp:1, (2)

Onp =0 [Kz,g : (V/’//;)2 + K- (0/v) + KQ]; 3

Ko+ Ko+ Ky =1, *

where P, and Q) are active and reactive load, respectively, at
base voltage #,. Voltage » is the load bus voltage in SI units.
K, K;, Kp and Ky 0, K0, Ky ate parameters describing the
voltage dependence of the active and reactive loads, respectively.

The values of ZIP model parameters (K, K; and Kp) may
in some cases be limited to range 0...1, and such a ZIP model
is called a ‘constrained ZIP model’ [4, 16]. Without these con-
straints the model is considered to be an ‘accurate ZIP model’

[4,16].

2.1.2 | Exponential load model

The exponential load model can be described by (5), reactive
load is represented by a similar Equation (6).

K2y
Pryp =Py fv)""7, (5)

Oixp = 0y - ) 1) 2, ©)

where P, and Q) are active and reactive load, respectively, at base
voltage #;. Voltage » is the load bus voltage in SI units. K.,
and K, o are exponential parameters describing the voltage
dependence of the active and reactive loads, respectively.
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2.2 | Measures of conversion error

In Section 2.1.1 it is shown that the ZIP model of active
power voltage characteristic P;p (1) is mathematically similar
to reactive load characteristic Oy;p (3). Next, it is shown in Sec-
tion 2.1.2 that the exponential model Pryp (5) and Qpxp (6)
are similar. Due to mathematical similarity of active and reactive
load model, following equations are only given for active load,
but also apply for reactive load models.

In case of load model conversion, the input voltage character-
istic Pz is assumed to be accurate and estimated model Po; 7
inaccurate. Depending on conversion direction and converted
model, Py and Py may stand for Pyp (1), Ozp (3), Prxp
() ot Drxp (6).

The difference €; (7) between the accurate voltage-power
characteristic 7 and converted characteristic Py at volt-
age 1; =u;/v, is considered to be conversion error at
voltage 1.

& = Pv(V7) = Pour (V). M

The relative conversion error at voltage 1/; is defined as 7;

®).

_ (@) — Pour (V) ®
! Pin (V)

The values of €; and 7); are used for analysing the direction of
the conversion error. In analysis steps, where the accuracy dif-
ference of methods is more important than the error direction,
the absolute values of €; and 7); are used.

To quantify the conversion error across voltage range 1/; €
{V1..VN} (4N € N) the mean absolute error (MAE) (9)
and normalised mean absolute error (NMAE) (10) are used.
MAE describes the mean magnitude of conversion error g;
(7) and NMAE the mean magnitude of relative conversion
error 1); (8).

N
1
MAE = 55 3 |Pv (V) = Pour (V) ©)

=1

Pin(V7) = Pour (V)

PV a0

1 N
NMAE:N;

Voltage range 0.8...1.2 p.u. is used for MAE and NMAE cal-
culation range 1] ... Iy, similarly to [7, 8, 16], for result com-
parability. This range corresponds to voltages where exponen-
tial PSCAD load models behave as exponential model and the
PSS/E ZIP load model behaves as a ZIP model (assuming the
value of PSS/E setting parameter PQBRAK to have value 0.8
p-u. or lower) [7, 8].

3 | METHODS FOR LOAD MODEL
CONVERSION

This paper focuses on the load model conversion from generic
ZIP load model to generic exponential load model. The input
load models are assumed to be accurate. The goal of the conver-
sion is to approximate the input load model by another model as
accurately as possible. In case of analytical methods presented in
Section 3.2 and Section 3.3, the same base values should be used
for input and output model to achieve best accuracy. Conversion
of models with base value mismatch is discussed in Section 3.1.
The specifics of PSS/E and PSCAD load models that have to
be taken into account when converting the models of these soft-
ware packages are discussed in [7, 8]. In the following sections
of the paper, equations are given only for the active load com-
ponent. The reactive component of the load has mathematically
similar equations.

In Section 3, the following load model conversion methods
are described:

* Non-linear least squares—based error minimisation methods
‘NLS abs’ (12) and ‘NLS rel’ (13) are presented in Sec-
tion 3.1. These methods are flexible, can handle both con-
version directions and different application needs.

* Analytical method for ZIP to exponential model conversion
is presented in Section 3.2.

* Three analytical methods for exponential to ZIP model con-
version are presented in Section 3.3:

(1) Analytical method ‘AM1” in Section 3.3.1
(2) Analytical method ‘AM2’ in Section 3.3.2
(3) Analytical method ‘AM3’ in Section 3.3.3

This notation of methods corresponds to names used in [8,
16] for easier comparison of results.

3.1 | Using non-linear least squares
optimisation for load model conversion

The aim of load model conversion is to minimise the mismatch
between the input and output models. This goal can be written
as a non-linear least squares optimisation problem, which is a
common approach for approximation of static load characteris-
tics from measurement data. In case of non-linear least squares,
the square of error is minimised (11).

N

min )" [, a1

=1

If the conversion error ¥, in (11) is represented by abso-
lute conversion error g; (7), the model conversion problem can
be formulated by (12). In following sections of the paper, the
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minimisation of squared absolute error is denoted by NLS abs.

N
min Y [P (1) = Pocr (1) 12)

=1

where 1/} is normalised voltage v/,

If instead of conversion error €, the relative conversion error
7; (8) is used as P; in (11), the objective function (13) is obtained.
In the following sections of this paper, the non-linear least
squares optimisation of relative error is denoted by NLS rel.

N 2
min Z [P/,\'(V}) — Pour(17) . 13)
P

P (1)

In the case of exponential to ZIP model conversion, the
optimisation problem is subject to K, + K; + Kp =1 (2) or
Kzp+ Kjp+ Ky =1 (4), depending if active or reactive load
characteristics are converted. To obtain parameter values for a
constrained ZIP model, the non-linear least squares method is
subject to bounds 0 < K, <1,0<K; <1and 0 < Kp <1or
in case of reactive load model 0 < K, < 1,0 < Kjp <1 and
0<Ky<1

If the base power and voltage of input model and output
model differ, it can be taken into account by using different
value of P, and 7, in the equation of ;5 and Py in (12) and
(13). When Py;p and Ppxp use the same voltage and power nor-
malisation bases, £, and 2, the optimisation problem (12) can

be simplified to Equation (14).

N
min [(KZ.<I/;)2+K,-(V/)+I<p)—(V}>k"“”]2- 14

=1

3.2 | Analytical method for ZIP to
exponential model conversion

Z1IP models are converted in [3, 4, 19] to exponential models by
Equation (15). In Section 2.1.1 and Section 2.1.2 it is shown that
the active power voltage characteristics Pryp (5) and Pyyp (1)
are mathematically similar to reactive load characteristics Oy yp
(6) and Qzp (3), respectively. Due to mathematical similarity of
active and reactive load model, (15) also applies for reactive load
models.

2-K,+1-K+0-Kp

Kioy ® (15)

3.3 | Analytical methods for exponential to
ZIP model conversion

The exponential load models can be converted to ZIP models
by several analytical methods, described in Section 3.3.1, Sec-
tion 3.3.2 and Section 3.3.3, or by previously described non-
linear least squares optimisation, described in Section 3.1. First

two analytical methods, AM1 (Section 3.3.1) and AM2 (Sec-
tion 3.3.2) are suitable for exponential to constrained ZIP model
conversion. Analytical method AM2 (Section 3.3.2) and AM3
(Section 3.3.3) are also suitable for exponential to accurate ZIP
model conversion.

3.3.1 | Analytical method AM1

Analytical method AM1 is presented in [22] by a set of rules
and equations, which are reformulated in [8]. The suitable equa-
tion or set of parameter values is chosen based on the value of
the exponent K., For exponent K, < 0.5, a constant power
model is used (16). A constant current model is used when
K. < 1.0 (17). In exponent Ky, value range 1...2, the values
of ZIP model parameters are calculated using (18) [8], which is
the analytical solution of the equation system presented in [22].
A constant admittance model is used if the value of exponent
Ky is larger than 2 (19).

K; =0
Ky <05—> 4K =0 (16)
Kp =1
K; =0
0.5< Ky, 1.0 S K =1 a7
Kp =
KZ = KEA;I? -1
1.0 < Ky <20 > { K, =2 Ky, (18)
Kp =0
Ky =1
Kpp220- {K =0 (19)
K[) =0
3.3.2 | Analytical method AM2

An improved version of conversion method AM1, described
in Section 3.3.1, is proposed in [8] and denoted as analytical
method AM2. AM2 is based on AM1. Equations (16) and (17)
are replaced by a more accurate Equation (20). Equation (19) is
replaced by (21), extending the K, range of (18).

In case of Kp,y, =0 and 1.0 < K, < 2.0, the conversion
results of method AM1 and method AM2 are equivalent [8].

K 7 = O
KEX/) <1- K = Kb‘xp (20)
Kp=1-=Kpy
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KZ = KExp -1
Kpy>1— S K =2-Kp, @1)
Kp=0

The values of ZIP model parameters K, K; and Kp can be
limited to the range 0...1 for converting exponential models to
constrained ZIP model by implementing the following changes
to the equation system described by (20) and (21):

(1) For negative values of K, (Kr., < 0), (22) should be used
instead of (20) to avoid negative values of K; and Kp > 1.
Thus, (20) should be limited to 0 < K., < 1, deriving (23).

(2) Equation (21) should be limited to 1 < K, < 2, deriving
(24), because K, 2 2 would otherwise lead to K7 > 1.
When K, 2 2, (25) should be used.

These modifications would lead to a similar method to ana-
lytical method AM1 in case K., < 0 or Kz, > 1. Thus, in case
of constrained ZIP model, the improvements of method AM2
would only have an effect when 0 < Kp,, < 1.

KZ =0
Kip 0= 9K =0 @2
Kp =1
K, =
0< Kpyy <1 3 K = Kpy, 23)
Kp=1=RKgy
Ky =Kpy—1
1< Kpy<2- 3K =2-Kp, 4
Kp =0
K, =1
Kpy220- { K =0 (25)
Kp =0
3.3.3 | Analytical method AM3

The exponential (5) and polynomial (1) load models are equiv-
alent at base voltage 2, because if »/v, = 1, then P = P,. At
intersections of the load characteristics, the load equations have
equivalent values Pyp = Pryp:

v ’ v v K
P/)' |:KZ . <Z> +K[’ (Z) +Kp:| =P/7' (;) y (26)

K, V24K -V 4 Kp= V0, @7

Replacing Kp in (27) with 1 — K, — K; and simplifying the
equations leads to derivation of (28).

Ky _ 1

Kz'(V+l)+K[: 7 —1

28)
Equation (28) includes two unknowns: K, and K; and has
0... 00 solutions. To limit the number of solutions to 0...1, it is
assumed that two additional intersections of ZIP and exponen-
tial characteristics exist at voltages 1] = »; /7, and 15 = 0, /1),
This assumption is supported by the conversion error analysis
results presented in [8]. Using the assumption, (29) is derived.

() — 1
K- +)+K=————
M-l 29
K V+1+1<_(V2)K"“’ﬁ—1) @)
z-(N+h+K = =1

where 1] and 1/ are in p.u., normalised with base voltage »,,.
The solution of equation system (29) is (30) [8]. The value of
Kp can be calculated from values of K, and K; using Equation

G1).

T/'lK/:vp_l
K L L R AR I
1

IR0

Kp=1-K,—K,. 3D

Equations (30) and (31) can be written as an equation system

(2).

K _ 1 MKEV’—l I/ZK[:.xp_l
77 - V=1 ,—1
K = — vy
| LR 32
I/'zKl:xp_l
+(1+1) =1
K[)Zl—KZ—K]

4 | RESULTS (1/2): ZIP TO
EXPONENTIAL MODEL CONVERSION

This results section complements the results presented in [16],
where the absolute error of conversion €; and MAE are anal-
ysed. In this section, the focus is on relative conversion error 7);

and NMAE.
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FIGURE 1  Impact of ZIP model parameter constraints on the normalised

mean absolute error (NMAE) of conversion. Load model converted using
method NLS rel. Plotted subsets filtered based on ZIP load model parameter
ranges —1...1,=2...2,=3...3 and —5...5

4.1 | (ZIP to Exp) input models and notation
of methods

A new smaller set of ZIP models (around 16,000) was gen-
erated to test repeatability of results presented in [16], where
30,000 models are used. Firstly, two vectors with 100,000 val-
ues —25...25 were generated. The random values are generated
with uniform distribution. Next, the third ZIP model parameter
was calculated by subtracting the two generated vectors from
a vector of ones to fulfil ZIP model property (2). ZIP mod-
els with extremely high voltage sensitivity (abs(Kp,,) > 8) were
detected based on exponential load model calculated by analyti-
cal method presented in Section 3.2 and removed from the input
model dataset. During plotting, the set is further decreased to
increase the readability of the figures.

Z1IP to exponential load model conversion is conducted using
three different methods:

(1) Analytical: analytical method described in Section 3.2 by
(15).

(2) NLS abs: conversion method based on minimisation of
squared absolute error described in Section 3.1 by (12).

(3) NLS rel: conversion method based on minimisation of
squared relative error described in Section 3.1 by (13).

4.2 | (ZIP to Exp) impact of zip model
parametet values on conversion error

Figure 2 describes the impact of ZIP model (input load model)
parameter values K, K;, Kp on the NMAE (10) of conversion.
ZIP models with NLS rel determined exponent Kp,, values
—5 £ Kp.y < 5 are shown. NLS rel determined exponent Kz,
values —3 < Ki?xp < 3 and constrained ZIP models are indi-
cated with different colours.

The highest conversion error (maximum value in Figure 2)
occurs if ZIP load model parameter K, has a large negative
value while K; has a large positive value. In such cases, based on

the ANMAFE subfigures, the NLS rel method is able to decrease
the NMAE value by less than 10%, compared to the analytical
method. The figure also indicates the gain to be proportional to
absolute values of ZIP load model parameter K, K;, Kp values,
higher ANMAFE occurs at higher absolute values of K, K; and

Pin Figure 2, the conversion error of constrained ZIP mod-
els with 0 < K, K, Kp < 1, which cotresponds to 0 < K, <
2, is negligibly small compared to the errors of models with
more relaxed constraints. For example, =3 < K, <3 0r =5 <
K.y < 5. Figure 1 illustrates the dependence between NMAE,
exponent K, and constraints of ZIP model parameters Ky,
K; and Kp. The model conversion is conducted using NLS rel
method. Based on Figure 1, the larger the ZIP model parameter
value limits, the larger the variability of NMAE of conversion
and the larger the maximum values of NMAE.

4.3 | (ZIP to Exp) estimated exponential
model and conversion error

The exponent K, values obtained by the use of analytical,
NLS rel and NLS abs method differ significantly, as shown by
Figure 3 and Figure 4. The smallest difference occurs in Figure 3
when Ky, ® —0.5 and in Figure 4 when K, & 0. In [8] the
K,y of analytical and NLS abs method is shown to have high-
est similarity when Kp,;, & 0.5. The three different values of
K. and non-linearity of the figures indicate conversion result
dependence on conversion method.

Figure 5 displays the NMAE (10) of ZIP to exponential
model conversion. NMAE values of ZIP models with analytical
K values =5 < K, < 5 are shown. According to Figure 5,
the conversion error displays a significant variation for all K,
values. Thus, it is not possible to assign a specific NMAE value
for each calculated K, value. However, it is possible to notice
that the lowest maximum values of NMAE occur in K, range
—2...3. In Figure 6, NMAE is plotted for NLS rel converted
models with Ky, =5 < K, < 5. In Figure 6 the NMAE val-
ues are significantly smaller than in Figure 5. Still, the NMAE
values can be high (0.3 p.u.) even when the models have K.,
values near 0. The input models with high NMAE were previ-
ously found to have large negative K, values and large positive
values of K. Figure 2 illustrates the relation between ZIP model
parameter values and NMAE values.

The NMAE value difference of analytical and NLS rel
method ANMAE (33) is plotted in Figure 7. ZIP models with
NLS rel determined Kp,, values —5 < K,y <5 are shown,
similarly to Figure 6. In Figure 7, a positive value of ANMAE
would indicate that the NMAE value of analytical method is
larger than NLS rel and the NLS rel method is more accu-
rate based on this measure of accuracy. The ANMAE val-
ues in Figure 7 are small, thus in case of these models, =5 <
K.y <5, the usage of NLS rel method does not significantly
increase the conversion accuracy compared to the analytical
method.

ANMAE = NMAE 4,440 — NMAEN] 5. (33)



LEINAKSE AND KILTER 7

Analytical NLS rel NMAE analytical’NMAE NLSrel
0874 08 0.06
0.7 0.05
0.6 0.04
m 0.5 2 003
S 04 = 00
703 q 001
02 0.00
0.1 -0.01
0 - 0.02
20 45 10 5 0 5 10 15 20 15 210 5 0 5 10 15 20
KZ KZ
0.06
0.05 3
0.04 %
m m 2 003 s
S S = 00
Z 2 4 001 ~ o~
000 - el 8
-0.01 r'/,
- -0.02
2520-15-10 5 0 5 10 15 20 25 2520-15-10 5 0 5 10 15 20 25 2520-15-10 5 0 5 10 15 20 25
Kl KI KI
08 0.06
0.7 5 0.05  &*
06 0.04 'k‘“
0 @ 05T 3% 2003 3dan
S S 04t ¥ = o0 1
z Z 03 tﬂﬂ‘ 4 ool A
: B A\
02 , 0.00 o
0.1 2001 v
0 - ~ -0.02
20 45 210 5 0 5 10 15 20 45 210 5 0 5 10 15 20
K, K,

Accurate ZIP model (with -5 < Kp, <5)
Accurate ZIP model (with -3 < KEXIJ <3)
Constrained ZIP model

FIGURE 2 Normalised mean absolute error (NMAE) dependence on ZIP model patameters K7, K; and Kp

5 5
e 4 g 47
o = L
v 3 N
e 2 = 27
S N
5] 9]
& 0 g 07
o -l S o-r
R T o2t
4 3 2 30
Z 4 Z 4
5 £ j 5 . | |
6 -5-4-3-2-101 2 3 456 6 -5-4-3-2-101 2 3 456
Analytical: exponent K Exp NLS abs: exponent K Exp
FIGURE 3 Calculated exponent K, values of analytical and NLS rel FIGURE 4  Calculated exponent Kp,; values of NLS abs and NLS rel

method method



LEINAKSE AND KILTER

8
10 f oo2r
=
75... ® Analytical = 0 Il'l'll‘llu.u:-o........clOllllll'II
5 " NLS rel - 2
o e <
g st s .
< g 4 .
= Z -6
Z 25 o)
z gt !
v g i
0 2 -10F
S5o40030 20 - 0 1 2 3 4 5 =] .
° el [}
Exponent K Exp ~ 14 . . . . . . . )
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
FIGURE 5 Relation between the calculated model exponent value K, Voltage V., p.u.
and the normalised mean absolute error (NMAE) of the load characteristic !
FIGURE 8 Voltage dependence of relative error of analytical conversion
method

0.8 f
@  Analytical
5 06 NLS rel
o
o
= 0.4
=
Z 02
0
S04 03 2 10 1 2 3 4 5
Exponent K Exp
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4.4 | (ZIP to Exp) voltage dependence of
conversion error

The relative load model conversion error 7); (8) depends on volt-
age. The voltage dependence of conversion error of the analyt-
ical method is shown in Figure 8, and NLS rel in Figure 9. ZIP
models with NLS rel determined K, values =5 < K, <5
are shown. According to Figures 8 and 9, the conversion error
of both analysed methods, NLS rel and analytical, is lowest near
nominal voltage. This is an expected result, as near nominal volt-

30020 -1 0 1 2 3 4 5
Exponent K Exp

FIGURE 7
and mean absolute error decrease ANALAE compared to the analytical method
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FIGURE 9 Voltage dependence of relative error of NLS rel conversion

method

age, the load is close to nominal as well, independent of load
model parameter values. Both methods display largest relative
conversion errors 7) at higher voltages. To analyse the difference
between Figure 8 and Figure 9, A, is plotted in Figure 10. Az,
is the difference between the relative conversion error of ana-
Iytical and NLS rel conversion methods, defined by (34). The
absolute values of relative conversion etrror are used to detect
which conversion result is closer to the accurate voltage-power

A n,p.u.
(3] ) £ wn (=)

2 L L L . .
0.8 0.85 0.9 0.95 1 1.05 1.1 L.15 1.2

Voltage Vi pu.

FIGURE 10
An; when NLS rel is used instead of analytical method

Relation between voltage 1; and conversion error decrease
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FIGURE 11  Normalised mean absolute error NMAE) dependence on ZIP model parameters K, K7 and Kp and conversion method

characteristic at voltage 1.

AN; = N napticarl = 10iNLSabs |- (34)
Figure 10 indicates that the gains of using one method instead
of the other can provide significant accuracy gains. However,
neither method displays constantly lower absolute value of 7.

5 | RESULTS (2/2): EXPONENTIAL TO
ZIP MODEL CONVERSION

In this section, the relative conversion error 7); (8) and NMAE
(10) of exponential to ZIP load model conversion are analysed.
These error measures are chosen for comparability to previous
Section 4.

51 | (Exp to ZIP) input models and notation
of methods

The set of exponential load models for load model conversion
error analysis was calculated using 0.005 step size and value

range —5...5. This led to a dataset of 2001 exponent values with
even distribution.

Exponential load models are converted to ZIP load models
by using five different methods:

M
@
©)
S

AM1: analytical method described in Section 3.3.1

AM2: analytical method described in Section 3.3.2

AMB3: analytical method described in Section 3.3.3

NLS abs: optimisation of squared conversion error
described by (12) in Section 3.1

NLS rel: optimisation of squared relative error described by
(13) in Section 3.1

©)

52 | (Exp to ZIP) impact of exponential
model parameter values on conversion error

The NMAE (10) was calculated for each converted load model
using the same voltage range as was used for model conver-
sion, from 0.8 to 1.2 p.u. In total, 2001 NMAE values were
obtained for each conversion method. The results were plotted
in Figure 12. According to the figure, the normalised mean
conversion error (NMAE) of positive K, value is smaller
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than the error of negative Kf,, value with equivalent absolute
value. The model conversion error is approximately symmet-
rical for Kp, = 1, except for analytical method AM1 in range
Kpp = (0...1). AMI has a local peak at K, = 0.5, at the
boundary of (16) and (17) .

At K., = 1, conversion is error-less for all methods, because
the exponential model is equivalent to the constant current
component of the ZIP model. Similar error-less conversion
takes place for K, = 0 and K, = 2.

Figure 12 clearly indicates that analytical method AM1 has
the worst performance and other methods should be used
instead. Analytical methods AM2 and AM3 display compa-
rable NMAE values to NLS abs and NLS rel method when
0 < Kjp < 2. Outside that Kjs,, range, the analytical method
AM3 and non-linear least squares methods (NLS abs and NLS
rel) display significantly lower conversion error than analytical
methods AM1 and AM2.

5.3 | (Exp to ZIP) estimated zip model and
conversion error

Figure 11 describes the NMAE (10) dependence of estimated
ZIP model parameter values Ky, Kj, Kp. According to Fig-
ure 11, the NMAE values of analytical method AM1 are highest
when K, K; or Kp are equal to 0 or 1. Based on the figure, ana-
lytical method AM2 parameters are limited to K, > 0, Kp > 0,
K; <1, which is in accordance with (20), (21) and (22). The
K, K; and Kp NMAE characteristics are similar for analytical
method AM3 and non-linear least squares relative error min-
imisation method NLS rel. The highest conversion error (max-
imum value in Figure 11) occurs if ZIP load model parameter
K, and K)p have a large positive value while K; has a large nega-
tive value.

5.4 | (Exp to ZIP) voltage dependence of
convetrsion error

The exponential load models are converted to ZIP models using
voltage range from 0.8 to 1.2 p.u. with 0.01 p.u. voltage step.
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FIGURE 14 Voltage dependence of relative error of analytical method

AM2

Relative conversion error (8) is calculated for NLS rel, analytical
method AM2 and analytical conversion method AM3. The volt-
age dependence of the methods is plotted in Figures 13, 14 and
10, respectively.

The voltage dependence of relative conversion error of NLS
rel method shown in Figure 13 indicates the existence of three
intersection points of exponential and ZIP characteristics: first
in voltage range 0.83...0.90 p.u., second at nominal voltage and
third in voltage range 1.12...1.18 p.u. The intersection points
are indicated by zero value of ;. Such intersections are also
observed in [8] and were used for deriving analytical method
AM3. The intersections occur within the optimisation region,
between voltages 0.8 and 1.2 p.u., near the boundary values 0.8
p.u.and 1.2 p.u.

According to Figure 14 the relative error of analytical method
AM2 is unidirectional and smallest near base voltage. The pos-
itive sign of relative conversion error (8), indicates that the ZIP
characteristic calculated by AM2 typically underestimates the
load compared to the exponential input charactetistic.

The relative conversion error difference of analytical and
NLS rel method An; (35) is plotted in Figure 15 and indicates
that NLS rel method has lower relative error across the whole
voltage range than analytical method AM2. The accuracy gain
offered by the NLS rel method is significant, in the same range
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as whole error of method AM2.

ANy = 0 nabticar| = 115 NESae|- (35)

The voltage dependence of relative error of analytical method
AM3 shown in Figure 16 indicates the existence of three inter-
section points of exponential and ZIP characteristic: first at 0.80
p.u., second at nominal voltage and third in voltage range 1.20
p-u. The intersection points are indicated by zero value of 7;.
Using the range boundary values 0.8 p.u. and 1.2 pu. as 1]
and 1/ in (30), the lowest relative conversion error will occur at
the voltage boundaries. The intersection points of exponential
and ZIP characteristic were used for deriving analytical method
AM3, thus the existence of these intersections corresponds to
the expectations.

The relative error difference of analytical and NLS rel method
An; (35) is plotted in Figure 17. The figure indicates, usage of
NLS rel instead of analytical method AM3 could provide a rela-
tive error decrease in voltage range 0.83...1.16 p.u. and increase
outside that range.

| CASE STUDY

6

In previous sections of the paper it is shown that the conversion
between exponential and ZIP load models involves an error:
load model conversion error. The load model conversion error

0.15
0.1

° Il
0.05
0.00 |II"Il"""I“llllll'll"l |l

<1 -0.05
-0.10

=

0.8 085 09 095 1 1.05 1.1 1.15 1.2
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FIGURE 17  Relation between voltage I7; and conversion error decrease
An; when NLS rel is used instead of analytical method AM3

2 2 7 8 9 3 63
Load Cl
5 - - 6
Load A Load B
FIGURE 18 Nine-bus power system

describes the mismatch between the original and the converted
voltage characteristic. In order to analyse the impact of conver-
sion error on load flow results, a case study of a small power sys-
tem is conducted. DIgSILENT PowerFactory is used for con-
ducting the load flow calculations of the nine-bus power system
[25] shown in Figure 18.

DIgSILENT PowerFactory is used for conducting the calcu-
lations due to the included load model General Load [26], which
can accurately represent the ZIP model (Section 2.1.1) and the
exponential model (Section 2.1.2). The mathematical model of
General Ioad corresponds to (36). The model of the reactive load
is similar. When General Load is used as a ZIP model, exponents
¢, ¢, and ¢, are assigned values 0, 1 and 2. This way the polyno-
mial equation (30) becomes a second-order polynomial, similar
to the ZIP models (1) and (3). However, when General Load is
used as an exponential load model, the value of two coefficients
(among a, b and ¢) are set to 0, and the value of the third is set
to 1. The exponent corresponding to the coefficient with value
1 is used as the exponent of the exponential model.

o[ (2 0 () e (]

at+b+c=1



12

LEINAKSE AND KILTER

TABLE 1
after increasing generator bus voltages (after modification)

Nine-bus system generator setpoints in original model, and

Original nine-bus model After modification

Gen. Bus P (MW) Q (Mvar) V (p.u) P (MW) Q (Mvar) V (p.u.)

G1 1 71.60 26.78 1.040 71.06 12.32 1.090
G2 2 163.00 670 1.025 163.00 1.00  1.088
G3 3 85.00 —10.90  1.025 85.00 —15.00  1.089
TABLE 2  Nine-bus system loads

Load Bus P (MW) Q (Mvar)
A 5 125.00 50.00

B 6 90.00 30.00

C 8 100.00 35.00

where P, is active power of the load at voltage #,, both defined
as Operating Point values in DIgSILENT PowerFactory; 4, b and
¢ are coefficients of the polynomial equation; ¢,, ¢, and ¢, are
exponents of the polynomial equation.

The nine-bus power system (Figure 18) includes three gener-
ators (Table 1), which are connected to the 1st, 2nd and 3rd
bus. The 1st bus, where generator G1 is connected, is mod-
elled as a slack bus. Generators G2 and G3 are modelled as PQ
buses. Previously, the voltage dependence of conversion error
was illustrated by Figures 8, 9, 13 and 14. According to the fig-
ures, the load model conversion error tends to increase with
voltage. To increase the impact of conversion error, the volt-
age of the power system was increased by modifying generator
bus settings. In the original model generator G1 is operated at
1.04 p.u. voltage [25, 27]. To increase the impact of load model
conversion error in the study, the voltage of generator G1 was
increased to 1.09 p.u. In addition, the reactive power references
of generator G2 and generator G3 were increased compared to
the original model to achieve similar voltages on all the gener-
ator buses (when loads are modelled by constant power). The
same generator settings were used for all simulations.

The nine-bus power system (Figure 18) includes three loads
(Table 2), which are located at the 5th bus (Load A), 6th bus
(Load B) and 8th bus (LLoad C). In the original nine-bus system,
the loads are modelled by constant power model.

In this study, the constant power model is replaced by expo-
nential or ZIP models depending on the analysis scenario. The
selected ‘accurate’ exponential and ZIP models are given in
Table 3. The exponential models of the table are used in the
base case for analysing the impact of exponential to ZIP model
conversions. Next, the exponential models are converted to
ZIP models with different conversion methods, and power flow
calculations are conducted with the ZIP models, obtained by
converting selected exponential models to ZIP models. The
selected ZIP models (Table 3) are used when calculating power
flow for analysing the impact of ZIP to exponential conver-
sion error. Again, the ZIP models are converted to exponen-

TABLE 3 Seclected exponential and ZIP load models

Exponential zr

Load Kp 1) Kzp Kip Kp Kz0 Ko Ko

A 133 247 568 -989 521 =577 986 —3.09

B 0.67 135 =470 949 =379 —11.39 2448 —12.09

C —1.35 —247 —418 998 —480 —566 893 =227
TABLE 4 NMAE when chosen exponential models are converted to ZIP
models

AM1 AM2 AM3 NLS rel

Load P Q r Q r Q r Q

A 0.16%  4.88% 0.16% 0.51% 0.01% 0.06% 0.01% 0.03%

B 3.39% 0.16% 0.16% 0.16% 0.01% 0.01% 0.01% 0.01%

C 13.82% 25.36% 2.22% 6.03% 0.36% 1.34% 0.20% 0.71%

tial models with different methods to illustrate the impact of
method selection.

For exponential to ZIP model conversions, the exponential
models are chosen based on the results of an international sut-
vey [3]. The mean load model of the international survey is used
for Load A and the maximum values of load model parame-
ters for Load B. Load C is assigned negative voltage sensitivities,
which are chosen to match the two largest exponent values of
Load A and Load B.

The ZIP models for ZIP to exponential model conversion
are selected with realistic voltage sensitivities (values compara-
ble to load models presented in [17]) and high conversion errors.
The active load models with corresponding voltage sensitivity
0...2, and reactive models with voltage sensitivity —3....3 are
analysed. Most of the chosen ZIP models have a high K p and
Ko value. Active load model of Load A is chosen with a neg-
ative K p value, and reactive load model of Load B with high
K value. The rest of the ZIP load models are chosen with
K;p and K; ) close to 10 from the previously generated set of
ZIP load models.

6.1 | Results of case study: Exponential to
ZIP model conversion

The chosen ‘accurate’ exponential load models (Table 3,
columns 2 & 3) wete converted to ZIP models by four dif-
ferent methods: AM1, AM2, AM3 and NLS rel. The same
voltage range (0.8 to 1.2 p.u.) is used for the conversion and
error calculation as in previous sections of the paper for clarity.
The conversion error would depend on the selected conversion
method, as shown in Table 4. The least accurate results would be
obtained by AM1 and the most accurate by NLS rel. The models
converted by these two methods were chosen for simulations to
illustrate the impact of conversion method.
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TABLE 5
model conversion (using methods AM1 and NLS rel)

Selected exponential load models and ZIP models acquired by

ZIP model of P ZIP model of Q

Conversion method Load Kzp Kjp Kp Kzo Kig Kq

AM1 A 033 0.67 0.00 1.00 0.00  0.00
0.00  1.00  0.00 0.35 0.65  0.00
0.00  0.00  1.00 0.00 0.00  1.00

NLS rel A 022 089 =011 1.81 —1.14 0.33
B =011  0.89 022 0.24 0.87 —0.11
C 1.62 —4.63 401 437 —-1137 7.99

The ZIP models acquired by exponential to ZIP model con-
version are shown in Table 5. The table clearly illustrates the
limited conversion capability of method AM1: it converts expo-
nential models to constrained ZIP models, thus causing large
conversion errors for models with negative exponents (models
of Load C, indicated by high NMAE values in Table 4). Method
NLS rel uses unconstrained ZIP model, which enables it to
approximate the exponential load model by ZIP models with
lower NMAE.

The use of least accurate conversion method AM1 (Table 0,
upper section) leads to three to four times higher relative voltage
magnitude error compared to the results of NLS rel (Table 0,
lower section). In case of both simulations with the ZIP mod-
els, the error is highest for Bus 8, where Load C is connected.
This is in accordance with the previous analysis results of con-
version error.

The load modelling errors caused by load model conversion
(Table 6) do not match with the NMAE values (Table 4). The
NMAE describes the mean absolute value of relative conver-
sion error, which is voltage dependant. The load bus voltage
of the load flow results differs. Table 7 shows how the relative
conversion error is affected by the voltage used in calculations.
The relative conversion errors are calculated at three different
voltages for each load model:

TABLE 7  Relative conversion error 7) of AM1 and NLS rel converted
models at different voltages. Voltages based on: 1, —load flow with
exponential models; 1711 —load flow with ZIP models from AM1; /7 g —
load flow with ZIP models from NLS rel; 17 ;- — load flow corresponding to

model
AM1 load model NLS rel load model

Load P/Q Vey  Van  Vir VeEw  VNisa  Vir

A P 0.03%  0.02% —0.99%  0.00%  0.00%  0.05%
Q —2.43% =2.08% —3.90%  0.03%  0.03%  0.12%

B P 2.34% 2.04% 1.45% —=0.10% —=0.10% —=0.07%
Q 0.06%  0.04% =1.13%  0.09%  0.09%  0.16%

C P 12.07%  9.11% 12.07% =027% —=0.27% —0.41%
Q 23.19% 17.29% 23.19% —1.06% —1.07% —1.31%

(1) Vi — voltages based on load flow with exponential mod-
els

(2) 4yn1 — voltages based on load flow with ZIP models from
AM1

(3) Vnrgw — voltages based on load flow with ZIP models
from NLS rel

(4) V775 — accutate load calculated based on the load flow
with exponential models, converted load calculated based
on load flow with AM1 or NLS rel converted load models.

The conversion error in column 1 ;- (Table 7) matches well
the load modelling error shown in Table 6. The small differences
are caused by numerical inaccuracies of calculation. The conver-
sion errors calculated based on single load flow results (I'z,
Vs and Vg g,) differ from the 17z, but in this case study
have a similar scale. For example, Iz,, V.

Tt and Vg gy
around 20% corresponds to a load modelling error around 20%.
These results suggest that the calculated load model conversion
error at load flow voltages could indicate the scale of the impact.
If the values are small, the impact of the conversion error of load

flow results is low.

TABLE 6  Relative error 7 of simulation with ZIP models acquired by using conversion methods AM1 and NLS rel
Conv. meth. Bus Voltage magn. Voltage angle P gen. Q gen. P load Q load
AM1 1 - - 14.35% 50.57% - -
2 —1.68% —6.70% 0.00% 0.00% - -
3 —1.61% —15.89% 0.00% 0.00% - -
5 —0.76% 13.46% - - -0.99% —3.90%
6 —0.87% 16.67% - - 1.44% —1.12%
8 —1.97% —100.00% - - 12.07% 23.20%
NLS rel 1 - - —0.30% —2.62% - -
2 0.09% 0.00% 0.00% 0.00% - -
3 0.00% 0.23% 0.00% 0.00% - -
5 0.04% —0.26% - - 0.05% 0.14%
6 0.04% —0.58% - - 0.03% 0.06%
8 0.10% 2.97% - — —0.37% —1.16%
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TABLE 8 NMAE when chosen ZIP models converted to exponential
models using analytical method (AM) and NLS rel
AM NLS rel
Load P Q P Q
6.82% 14.82% 6.72% 14.99%
7.43% 30.94% 7.38% 29.16%
8.07% 20.28% 7.87% 20.56%

TABLE 9 Converted exponential models from AM and NLS rel
AM NLS rel
Load Kp K Kp K
1.48 —1.69 1.25 —1.99
0.09 1.69 0.15 294
1.61 —2.39 1.91 —3.00
6.2 | Results of case study: ZIP to

exponential model conversion

The chosen ‘accurate’ ZIP load models (Table 3, columns 4 to
9) were converted to exponential models by two different meth-
ods: analytical and NLS rel. The same voltage range (0.8 to 1.2
p-u.) is used for the conversion and error calculation as in previ-
ous sections of the paper for clarity. The NMAE difference of
the two methods is negligible in Table 8.

However, when the converted models (Table 9) are com-
pated, significant differences may be observed. All converted
models differ, largest difference is over 1, smallest 0.06.

The simulation with chosen ZIP load models is used as an
accurate result for error calculation. Both conversion meth-
ods lead to a similar voltage magnitude error (Table 10)
—3.5... —2.2%. Considering the similar conversion error results
shown in Table 8, this is an expected result. The voltage angle
error of most buses is significantly lower with NLS rel method
(compared to AM).

The load modelling errors caused by load model conversion
(Table 10) do not match with the NMAE values (Table 8). The
NMAE describes the mean absolute value of relative conver-
sion error, which is voltage dependant. The load bus voltage of
the load flow results differs. Table 11 shows how the relative
conversion error is affected by the voltage used in calculations.
The relative conversion errors are calculated at three different
voltages for each load model:

(1) Vzp— voltages based on load flow with ZIP models

(2) 174 — voltages based on load flow with exponential mod-
els from analytical method

(3) Vi — voltages based on load flow with exponential
models from NLS rel

(4) 17 —accurate load calculated based on the load flow with
ZIP models, converted load calculated based on load flow
with analytical or NLS rel converted load models.

Converted Accurate
load model load model
P]‘
Load modelling
Load model conversion error at Vi
error in load flow
=
g P
—
V]
Voltage
FIGURE 19 Conversion error and load modelling error in load flow

results when the load bus voltage is not affected by the load model replace-
ment. With accurate load model the load operates at voltage 1} and consumes
Py. With converted load model the load operates at voltage 1] and consumes
Py

The conversion error in column 1 ;= (Table 11) matches well
the load modelling error shown in Table 10. The small differ-
ences are caused by numerical inaccuracies of calculation. The
conversion errors calculated based on single load flow results
(VEsps Vaanr and Vg gy) differ from the 17, but in this case
study have a similar scale. For example, Iz, 14y and Vg g
around 20% corresponds to a load modelling error around 20%.
These results suggest that the calculated load model conversion
error atload flow voltages could indicate the scale of the impact.
If the values are small, the impact of the conversion error of load
flow results is low.

7 | DISCUSSION
7.1 | Conversion error and load modelling
error in load flow

In Section 6 load flow calculations are conducted with chosen
load models and converted load models. The acquired load flow
results differ, and the calculated conversion error describes the
observed changes of load flow results only partially. In this sub-
section, the relation between conversion error and load flow
error is discussed.

When replacing the load models in the system model has only
negligible effect on the load bus voltages, the load modelling
error in load flow corresponds to the load model conversion
error. This situation is illustrated by Figure 19, where the load
bus voltage is assumed to be ] in both load flows (with
chosen and converted load model), and depending on the load
model, the load flow converges at load Py or P,. As the load
is operating at the same voltage in both load flow results, the
load modelling error matches the load model conversion error
(calculated at 7).

In the conducted case study, the replacing of load models
caused a change in calculated load bus voltages. This situation is
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TABLE 10 Relative error 7) of simulation with exponential models acquired by using analytical conversion (AM) and method NLS rel
Conv. meth. Bus Voltage magn. Voltage angle P gen. Q gen. P load Q load
AM 1 - - =3.72% —105.02% - -
2 —3.20% 19.51% 0.00% 0.00% - -
3 —=3.19% 40.34% 0.00% 0.00% — —
5 —2.23% —6.49% - - —7.39% 13.90%
6 —2.23% 1.53% - - 5.60% 9.21%
8 —3.51% —12.00% - - 2.05% 45.21%
NLS rel 1 - - —2.06% —108.23% — —
2 —3.12% 13.97% 0.00% 0.00% - -
3 =3.19% 21.01% 0.00% 0.00% - -
5 —2.16% —5.44% - - —8.81% 11.31%
6 —2.45% 3.94% - - 6.08% 20.03%
8 —3.47% 0.40% - - 5.15% 36.68%
TABLE 11  Relative conversion error 7) of AM and NLS rel converted
models at different voltages. Voltages based on: 17p —load flow with chosen
ZIP models; 171y, —load flow with exponential models from AM; a7 g — Converted Accurate
load flow with exponential models from NLSrel; 177 ;- —load flow load model =§ load model
corresponding to model §
P Y
AM load model NLS rel load model .
Load model conversion error at Vi
k=l
Load P/Q Vzp Vam Vir Vzp VNLsret - VLF g P 4 + Load modelli
~ Pa o 0 error in load flow
A P —4.27% —2.53% =7.41% —6.29% —4.16% —8.81% L . ¢
oad model conversion error at V2
Q 9.63%  5.03% 13.89%  6.60%  2.92% 11.33% P. =
B P 577%  3.36%  556%  6.46%  3.68%  6.07% = 5
Q 13.47%  7.94%  9.22% 29.20% 18.63%  20.10% -
C P 8.14%  4.26%  2.07% 12.48%  7.36%  5.13% seveTILl < v
2 1
Q 33.30% 13.68% 45.21% 23.03%  7.32% 36.78% Voltage
FIGURE 20 Conversion error and load modelling error in load flow when

illustrated by Figure 20. Using the accurate load model, the load
operates at voltage 1/} and consumes P;. When the accurate
load characteristic (black line) is converted to dashed character-
istic, the load flow converges at load bus voltage 1. The load
consumes /P, based on the converted load model and bus volt-
age. This means that the operation point of the load has shifted
due to load model conversion from P 1] to P, 15. The con-
vetsion error is defined as the difference of two characteristics
at a specific voltage. This means that the difference between Py
and Py, corresponds to load model conversion error at 1. Sim-
ilarly, the difference between P, and P, corresponds to con-
vetsion error at 5. Both of these values differ from load mod-
elling error, which is the difference between ) and P,,. The
load modelling error can only be caused by load model conver-
sion if conversion error exists, thus the conversion error affects
the load modelling error in load flow. The voltage change caused
by the model replacement is dependent on the network model.
In the case study, the load model conversion error at voltage
17} and 1/, has a similar scale as the load modelling error in load
flow. It is possible that in realistic power system models, the load
models replacement has a limited effect on the bus voltages, and

change of load characteristics causes bus voltage to change. Conversion error
and load modelling error in load flow results when the load bus voltage is
affected by the load model replacement. With accurate load model the load
operates at voltage 1] and consumes 7. With converted load model the load
operates at voltage 1, and consumes 75,

the result applies in most cases. In future research, this hypoth-
esis could be tested by simulating additional network models.
Another possible direction for future research is sensitivity anal-
ysis: the sensitivity of load flow results to load conversion error
could be analysed.

7.2 | Recommendations for choosing load
model conversion method

7.2.1 | ZIP model to exponential model
conversion

Three methods were presented for converting ZIP models to
exponential models:
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(1) Analytical: analytical method desctibed in Section 3.2

(2) NLS abs: conversion method based on minimisation of
total squared absolute error described in Section 3.1

(3) NLS rel: conversion method based on minimisation of total
squared relative error described in Section 3.1

When ZIP models with expected exponential model —3 <
K.y < 3 are converted, the NMAE of NLS rel and analytical
method are similar and the analytical method may be a better
choice due to simplicity. This conclusion is supported by the
case study results, where the converted load models are in range
—3 < Kp.y < 3. In the case study, the voltage magnitude errors
of load flow calculations are similar for both conversion meth-
ods. However, the voltage angle errors and load modelling error
of the case study are contradicting: analytical method has mostly
lower load modelling error, while NLS rel has lower voltage
angle error. The use of NLS rel and NLS abs is reasonable when
models with extreme voltage characteristics are converted or
additional flexibility is needed. For example, for handling model
base value mismatch on non-symmetrical voltage range of con-
version. The choice between NLS rel and NLS abs should be
done based on selected measure of error: NLS rel is better at
minimising relative conversion error and NLS abs more suitable
for minimising non-normalised conversion error.

7.2.2 | Exponential model to ZIP model
conversion

Five methods were presented for converting exponential mod-
els to ZIP models:

(1) AMT1: analytical method described in Section 3.3.1, suit-
able for converting exponential models to constrained ZIP
models, use of method not recommended

(2) AM2: proposed method described in Section 3.3.2, suit-
able for converting exponential models to accurate and con-
strained ZIP models

(3) AM3: proposed method described in Section 3.3.3, suitable
for converting exponential models to accurate ZIP models

(4) NLS abs: optimisation of squared conversion error
described in Section 3.1

(5) NLS rel: optimisation of squared relative error described in
Section 3.1

The accuracy and flexibility of non-linear least squares opti-
misation, described in Section 3.1, methods NLS abs and NLS
rel, are the highest. When models with extreme voltage charac-
teristics are converted or additional flexibility is needed, e.g. for
handling model base value mismatch or non-symmetrical volt-
age range of conversion, the use of NLS rel or NLS abs method
is recommended.

First two analytical methods, AM1 (Section 3.3.1) and AM2
(Section 3.3.2) are suitable for exponential to constrained ZIP
model conversion. AM2 has higher conversion accuracy than
AMI1, thus it should be used instead of AM1 when con-
strained ZIP models are desired. Analytical methods AM2 (Sec-

tion 3.3.2) and AM3 (Section 3.3.3) are suitable for exponential
to accurate ZIP model conversion. If the exponent of exponen-
tial model is 0 < K, < 2, the accuracy of AM2 and AM3 is
similar, either method can be chosen. However, outside the pre-
viously defined K, range, analytical method AM3 and non-
linear least squares methods (NLS abs and NLS rel) display sig-
nificantly lower conversion error than analytical methods AM1
and AM2. Thus, in such cases analytical method AM3 is recom-
mended over AM1 and AM2.

8 | CONCLUSION

This paper described several methods for ZIP to exponential
and exponential to ZIP load model conversion. For comparing
the accuracy of the methods, a ZIP model dataset and an expo-
nential model dataset were generated. The generated datasets
were converted using the presented methods. The relative con-
vetsion error and the NMAE were calculated for the converted
models. The conversion errors were plotted and analysed. It
was shown that the conversion error depends on the method,
voltage and parameter values of the load models. Recommenda-
tions for load model conversion method selection based on load
model conversion error are given in Section 7. A case study (Sec-
tion 6) was conducted to illustrate the impact of load model con-
version on load flow results. The results of the case study indi-
cate that load model conversion can cause a significant change
in load flow results.
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Abstract—This paper focuses on the data post-processing stage
of the measurement-based load modelling. Exponential load mod-
els are estimated from DFR (Digital Fault Recorder) measured
events. The least squares algorithm is used for model estimation.
The acquired set of models is used for investigating how the
distribution of estimated values depends on the event filtering.
Filtering based on voltage and current unbalance ratio, residual
voltage of disturbance, voltage deviation, and estimated load
model parameter values is analysed. In addition, two different
methods for calculating representative model from a set of event
based values are compared. One of the analysed methods is found
to be less sensitive to event filtering.

Index Terms—exponential model, load modelling, static load
models

I. INTRODUCTION

There are three main approaches for estimating the load
model of an aggregated bus load. Firstly, the component-
based approach, which involves identification of load com-
ponent models and composition. The load components can
be load classes (residential, industrial), device types (boiler,
incandescent lamp, washing machine). The load component
models are defined as a sum of basic models (e.g. ZIP model,
induction motor model). The total consumption is disaggre-
gated to determine the contributions of the components, and by
aggregation the bus load is derived. Secondly, measurement-
based approach, where the load models are estimated based
on measurement data. Thirdly, combined approach, which
involves a combination of the first two methods. In this study
the measurement-based approach is implemented.

The measurement-based load modelling typically involves
several data processing stages: 1) data collection, 2) data
pre-processing, 3) load model estimation (may include load
model selection), 4) model validation. Different measurement
systems can be used for acquiring the data: Digital Fault
Recorder (DFR) [1]-[3], SCADA [4], [5], Phasor Measure-
ment Unit (PMU) [6]-[10], Power Quality (PQ) Monitor
[11]-[13]. The DFR data was used in this study due to the
available historical database, and coverage of the measurement
system (large number of aggregated loads measurable by this
system). The pre-processing can involve filtering [14], [16],
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Dept. of Electrical Power Engineering and Mechatronics
Tallinn University of Technology
Tallinn, Estonia
0000-0003-4985-857X

DFT-based signal processing [15], rms value calculation [3],
positive sequence component calculation [16], event selection
for load model estimation [15]. In this paper the impact of
event selection is discussed and analysed based on a case
study. The load model estimation is commonly done by using
least squares estimation (used for example in [16]-[18]).
Alternatively, Genetic Algorithm [16], [19], and Simulated
Annealing [16], improved particle swarm optimization (IPSO)
[20] and others have been implemented by different authors.
The least squares minimisation was used in this study as the
estimation algorithm improvement is not a goal of this paper
and this method works well. In the fourth stage, validation, the
estimated model is used for event simulation and results are
compared to measured data, or compared to historical events
[15]. In this study, the estimation error was calculated for the
models to assess the goodness of fit. After the estimation of
load models based on events, there can be a significant number
of load models. Which one to use as the representative value?
Several different approaches are used in this kind of situation:
common approach is mean value calculation [6], [14], [16],
[21]-[23], it is also possible to calculate a weighted mean
[24] or estimate a load model using several events [10]. In
this paper, the mean and error weighted mean value have been
used, and were compared.

The introduction section of this paper is followed by three
sections. In Section II the used data processing methods are
presented and explained. In Section III the results of the
conducted case study are presented. The main results of the
paper are summarised in Section IV.

II. METHODS
A. Case Study

In this case study DFR data was acquired from a historical
database. The data is from years 2018-2020. Data from 1
substation is used. The used DFR is event based: 250 ms
of data is recorded pre-triggering and 5 seconds after. 1
kHz sampling rate is used for recording instantaneous values
of voltage and current. All other values are derived from
these measured values. Sliding window algorithm using dis-
crete Fourier transform is used for obtaining phasor domain
quantities. The exponent K, and K, of exponential load
model (Section II-B is estimated for each recorded event using



least squares estimation (Section II-C). The estimation error
is quantified by Mean Square Error (MSE) (4) and Mean
Absolute Error (MAE) (9). The possibly bad events (from
load model estimation perspective) are detected using methods
discussed in Section II-D. In addition, the sets of estimated
load models (sets of K, and K, values) are processed using
methods described in Section II-E. The results are presented
in Section IV.

B. Exponential Load Model

The exponential load model can be described by (1) and
2).

Prxp = Py(V/Vy)Kr Q)]

Qexp = Qo(V/Vy)Ke )

where Py and @)y are real and reactive power of the load at
pre-event voltage Vj respectively. K, and K, are exponents
describing the voltage characteristics of the real and reactive
power of the load.

C. Load Model Estimation

Exponential load models (1) and (2) are estimated by using
the commonly used least squares estimation, which has been
used for example in [3], [12], [16], [18], [28], [29].

N
. 1
min MSE = min ﬁ ;(Pmodeli - Pmeaﬁi)Q (3)
For estimating exponential load model parameters, the follow-
ing model equation and boundary conditions can be used for
3.
1N
MSE = — " (Pmodcti — Preasi)’ 4
N ;( del si) 4)
* 'modeli = PO(‘/'L'/‘/U)KPU
e« —10.0 < K,, <10.0
e —10.0 < K4, £10.0

D. Methods for Assessing Event Suitability

Different requirements for events that can be used for load
model estimation are described and used in the literature.
In this paper, several approaches are implemented and the
detected events are compared.

According to [15] a suitable event for load model estimation
should have voltage and current unbalance below 10%. In
this study maximum value of negative and zero sequence
unbalance ratio is calculated for each recorded event. The
negative sequence unbalance ratio us (5) is defined in [26]
as the ratio between negative sequence component Us and
the positive sequence component U;. Similarly, [26] defines
the zero sequence unbalance ratio ug (6) by the ratio of zero
component Uy, and the positive sequence component Uy .

U

U = —
U

100% %)

U
= — 100 6
Ug 7 % (6)

In [15] the event is required to take place upstream or
on an adjacent feeder. In [23] the direction of voltage and
power change is used for detecting load disturbances. [23]
expressed this condition as sign(AV) - sign(AP) > 0.
This idea could be implemented in several ways. Firstly, the
AV - AP > 0 could be used instead of sign functions.
Secondly, the opposing direction of voltage and load change
would lead to estimation of negative value of active power
exponent K,,. Based on the survey results presented in [27]
the used minimum values of active power parameter np (here
denoted as K, and load change would lead to estimation of
negative value of active power exponent K,,) are 0. In [30] a
few loads displayed a K, value of -0.01. When analysing
aggregated loads, occurrence of negative values should be
highly unlikely. In conclusion, the negative values of K,
could provide similar results to using equation AV - AP >0
or sign(AV') - sign(AP) > 0. In this study, the negative K,
value detection was implemented as filter F1.

In [15] the suitable event is required to have a sufficient drop
in voltage (10% or more). [23] and [31] claim that voltage
changes of 0.5% are sufficient for load model estimation. The
difference between maximum and minimum measured voltage
AV was calculated for each event to analyse the impact of
depth of voltage drop. In the filter F6 AV value 5% was
implemented.

In [15] the event is required not to be a voltage interruption.
To detect interruptions, the minimum value of rms voltage
was measured. An interruption is defined in [32] by rms
voltage drop below 5%, [26] mentions a threshold of 5% or
10%. Actually, at voltages below 85% of nominal voltage
load devices self-disconnect from the grid [25]. For this
reason, actually the minimum voltage threshold for load model
estimation can be set much higher. For example at 80% of
nominal voltage, which was implemented in this study.

E. Post-Processing Estimated Values

In order to calculate a representative value from a set of
load model parameter values, several methods can be used.
The most common approach is to average the values, as
has been done in [6], [14], [16], [21]-[23]. Extreme values
of load models can significantly affect the results when the
number of averaged samples is relatively small. Alternatively
to the common approach, [10] uses a multi-curve identification
process, where the measurement data of several events is used
for identifying a load model.

In [24] the idea of calculating estimation error weighted
average was proposed. In case of that approach a weighted
mean value K (7) is calculated from M event-based parameter
values K;, adding weight w; to each estimated value.

M
K= >izy (wi - K;) %)



The inverse of error ¢; is used as the weight w;and (8) is
obtained. The values of MSE (4) are used in this study as the
values of ¢;.

M
i1 (Ki/ei
K = St (Kife) ©
e (/&)

In this paper two measures of error are used for quantifying
the goodness of fit of estimation: MSE (4) and Mean Absolute
Error (MAE) (9)

N
1
MAFE = N;|Pmodeli_Pm€a5i| (9)

III. RESULTS
A. Unfiltered Events

Firstly, the load models are estimated for all DFR recorded
events (1843 in total). The histograms of estimated K, and
K, values are shown in Fig. 1. In the figure there is a high
estimated value count at value -10 and 10. This is caused by
the used boundary values of load model parameter estimation
(marked by blue lines in Fig. 1): -10 and 10 were used as
boundary values in load model estimation phase. The exponent
K, is at the boundary value for 1279 and K, for 1557 times.
From these 1105 are common events. When the boundary
values are removed from the set of estimated parameter values,
Fig. 2 is acquired. Compared to Fig. 1, the new histogram Fig.
2 is closer to the normal distribution, and it is apparent that
the boundary values acted as outlier.

[ Estimated £,
[ Estimated K,

Boundary Value

1000 7

Exponent K
Fig. 1. Estimated exponential parameter K, and K4, when load models
are estimated for all measured events, blue lines mark the boundary values

used in estimation.

[ Estimated X,
:l Estimated K,

150 T T
100 F -
=
=
S

50 1

0
-15 -10 -5 0 5 10
Exponent K

Fig. 2. Estimated exponential parameter K, and Ky, when load models are
estimated for all measured events and results at boundary values are removed.

The sets of estimated parameter values were fitted to normal
distribution (with 95% confidence), and the mean p and the
standard deviation o were calculated (shown in Tab. I). The
estimated Probability Density Functions (PDF) are shown in
Fig. 3 and Fig. 4.

TABLE 1
MEAN VALUE pt AND STANDARD DEVIATION o OF NORMAL
DISTRIBUTION FIT (WITH 95% CONFIDENCE), MSE WEIGHTED MEAN
VALUE ppssE AND MAE WEIGHTED MEAN VALUE pip A BASED ON
ALL MEASURED EVENTS, EXCEPT BOUNDARY VALUES

Exp Model | Avg.,, | Std. Dev.,, | MAE Weight. | MSE Weight.
Paramet H [ Avg, piMSE | AVE, UMAE
Kpy 0.792 2.854 0.927 0.782
Ko -0.448 4.857 0.176 1.034

[ Estimated K,
Estimated Normal Distribution of K v
0.3 T T T

Probability

-10 -5 0 5 10
Exponent K

pv
Fig. 3. Estimated exponential parameter K, when load models are estimated
for all measured events and results at boundary values are removed.

- Estimated K o

Estimated Normal Distribution of K,
0.1 T T T T T T

Probability
f=1
>

-10 -5 0 5 10 15
Exponent K,

Fig. 4. Estimated exponential parameter /4, when load models are estimated
for all measured events and results at boundary values are removed.

B. Event Filtering

In Section II several approaches for detecting possibly
unsuitable events were described, nine different event filters
were implemented based on the discussions. To analyse how
many events would be filtered out by a filter and how many
events are detected by several filters Tab. II was constructed. In
the table, the diagonal elements indicate the number of events
that would be filtered out if only that filter would be used. The
rest of the numbers of the table illustrate how many common
events would be flagged by two different filters. The following
denotation is used in Tab. II:



e F1 - negative value of K,

« F2 - negative sequence ratio of voltage over 10%

o F3 - zero sequence ratio of voltage over 10%

o F4 - negative sequence ratio of current over 10%

o F5 - zero sequence ratio of current over 10%

o F6 - AV below 5%

o F7 - rms voltage drops below 80% of nominal

e F8 - value of K, is at a boundary

e F9 - value of K, is at a boundary

According to Tab. II the largest number of events are flagged
by boundary condition filters F8 and F9. Most of the events
detected by F8 are also detected by F4 and F5, which are
based on current unbalance (F4 checks for maximum value
of negative sequence ratio and F5 zero sequence ratio). This
means that most of the boundary events of K, could be
detected by current unbalance filter. In case of K, boundary
values (filter F9), roughly 2/3 of flagged events were detected
by the same current unbalance filters (F4 and F5). The detected
events of F4 and F5 are mostly common, F5 can detect only
5 events, that were undetected by F4. The voltage unbalance
filter F2 and F3 only detect a small number of events that were
also detected by the current unbalance filters. In conclusion,
the voltage unbalance ratio filters (F2, F3) and large voltage
drop detection (F7) were with lowest sensitivity and were
covered by the current unbalance detection. Thus, these filters
can be considered to be redundant.

TABLE II
NUMBER OF UNSUITABLE EVENTS DETECTED BY FILTER®

F1 | F2 | F3 F4 F5 F6 F7 F8 F9

F1 | 842

F2 19 65

F3 11 40 | 40

F4 | 728 | 65 | 40 | 1428

F5 | 602 | 64 | 40 | 1257 | 1264

F6 | 769 | 11 11 | 1193 | 1070 | 1576

F7 18 56 | 40 58 55 11 58
F8 | 682 | 18 | 10 | 1266 | 1144 | 1155 | 13
F9 | 736 | 11 7 1183 | 1025 | 1421 | 11
2 Explanation of event filter F1...F9 in text.

1279
1105

1557

C. Estimated Load Models After Event Filtering

Based on the histograms of estimated values, filter F1 was
disabled, as it caused distortion in the data distribution: when
negative K, were removed, the symmetry of the values
weakened, which could cause erroneous shift of mean value.
Thus, if the mean value of a set of load models is used, filter
F1 may need to be omitted for acquiring proper results. Filters
F2...F9 were implemented, the load model parameter sets were
fitted to normal distribution, PDF of K, and K, is shown
in Fig. 5 and Fig. 6, respectively.

Based on the calculated load model values (Tab. III), the
calculated mean value of K, increased, and the standard
deviation decreased from 2.854 to 2.498. This indicates that
the accuracy of mean value of K, could have improved as a
result of the filtering. Contradictory is the standard deviation
o of Kg,, which increased from 4.857 to 5.148. The filtering

I:l Estimated KP‘,

Estimated Normal Distribution of K,

0.3 T T T

. —
=027} 1 1
fa L1
E B
201Ff 1
~

0

-10 -5 0 5 10

Exponent K

pv
Fig. 5. Estimated exponential parameter K, when load models are estimated
for filtered events.
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Fig. 6. Estimated exponential parameter K4, when load models are estimated
for filtered events.

had lowest impact on the weighted mean value that was
calculated using MSE based weighting. The K, values of
error weighted sums differ significantly from the calculated
mean. Considering the results, the accuracy of the K, values
is possibly with low accuracy, and the values can not be used
for estimating a reliable value.

TABLE 11T
MEAN VALUE gt AND STANDARD DEVIATION o OF NORMAL
DISTRIBUTION FIT (WITH 95% CONFIDENCE), MSE WEIGHTED MEAN
VALUE pprsE AND MAE WEIGHTED MEAN VALUE piar A BASED ON
FILTERED EVENTS

Exp Model | Avg.,, | Std. Dev.,, | MAE Weight. | MSE Weight.
Par M o Avg., upsE | AVEs UMAE
Kpo 1.018 2.498 0.889 0.763
Kqov -0.078 5.148 0.272 0.964

IV. CONCLUSION

In this paper several methods for unsuitable event de-
tection, and post-processing estimated values are presented.
The presented approaches are compared based on a set of
DFR measurement data, which covers 3 years and includes
1843 events. Nine different event filters were implemented
for unsuitable event detection (and flagging). The filters are
based on voltage and current unbalance ratio, residual voltage
of disturbance, voltage deviation, and estimated load model
parameter values. The implemented filters were compared and
it was found that the current unbalance ratio based filtering
is able to detect all the same events as were detected by



voltage unbalance, and many more. Furthermore, the negative
sequence current ratio based filtering is able to detect almost
all the zero-sequence current ratio filter detected events, and
all the interruptions. MSE error weighted averaging was found
to be less sensitive to event filtering than basic averaging.
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Abstract—The voltage dependence of loads plays a major role
when the conservation voltage reduction (CVR) is analysed or
implemented. This dependence is affected by the amount of
distributed generation (DG) included among the load of the
aggregated bulk supply point. In this paper, the impact of DG on
estimated values of exponential load model and ZIP load model
(second order polynomial load model) is analysed based on a
measurement-based case study. A new equation is presented for
assessing the impact of DG penetration level on the ZIP model
of the aggregated load (with DG). Additionally, the modelling
accuracy of ZIP and exponential model is compared and the
exponential model is shown to provide a better accuracy than
the ZIP model for modelling this type of loads. The case study was
conducted in a distribution network with significant amount of
DG. An on-load tap changer was used for inducing the voltage
changes. Both, exponential load models and ZIP load models,
were estimated from measurement data for transformer load
and aggregated load excluding the DG.

Keywords—conservation voltage reduction (CVR); distributed
generation; exponential load model; load modelling; static load
models; ZIP model

I. INTRODUCTION

The use of renewable energy sources has increased for over
a decade, each year more power is generated by centralised and
distributed units powered by renewable sources. In European
Union, the increasing use of DG is supported by the long-
term goal of EU to become climate neutral by 2050 [1], and in
shorter term by the Energy Performance of Buildings Directive
(2010/31/EU). The directive required all the new buildings
to be nearly zero-energy buildings (NZEB) from the end of
2020 [2]. Many recently built NZEB are mounted with local
photovoltaic (PV) generation to meet the NZEB requirements.
Mentioned aspects enlarge the amount of DG connected to the
distribution network. In most cases, the DG units influence
and change the demand variability at the bulk supply points
of the power grid [3] due to weather dependent intermittent
generation [4]. Therefore, it creates new challenges for grid
operation [5]. One resource for increasing flexibility is the
voltage dependence of loads. By controlling the supply voltage
of the loads, it is possible to affect the operation points
of the loads and to decrease the load of the system. Load
control by voltage regulation is known as Conservation Voltage
Reduction (CVR). A detailed review of CVR implementation
aspects is given in [6]. The load reduction through CVR (CVR

factor) depends highly on the voltage characteristic of the load
[3], [7] (load composition in [8]). The load composition of
bus loads can also be used for grouping aggregated loads into
type groups [9]. Furthermore, load reduction is affected by
generated active power of the DG units [3], [7], [10], and the
reactive power control of the DG [11].

In [3] the net feeder load sensitivity (to voltage) is used to
estimate the effectiveness of CVR. The load sensitivity, CVR
factor (power/energy change divided by voltage change), is
approximately equivalent to the exponent of an exponential
load model [3], [12]. The CVR is quantified in [3], [12],
[13] by an exponential load model, and in [13], [14] the ZIP
model is used. The ZIP and exponential load models, and the
conversions between the models are described and analysed
in [15]-[17]. Based on the results of [13], the modelling
accuracy of the ZIP load model could be higher than accuracy
of exponential model. In this paper, the exponential and a ZIP
load model are both estimated for feeder load, which includes
high amount of DG. The accuracy of the models is compared.

In [3] the effect of DG on net voltage sensitivity of
aggregated load is analysed and demonstrated with a real
time digital simulator. The numerical aspects of the derived
equations are discussed in [18]. Similarly to [19], [20], the
DG units are assumed to operate as constant power sources.
The mathematical derivations of [3] were further developed
and applied in measurement-based case study [21]. In the
study [21] the impact of DG on estimation of exponential
load models of aggregated loads is analysed. The results of the
case study indicate that the linearisation based derivations give
reasonable analytical results in a small distribution network
with high penetration of DG (60...80%). In [21] the DG units
are connected relatively close to the substation and other
network configurations are not analysed.

In this paper a new mathematical equation is presented
for assessing the impact of DG penetration on the estimated
values of ZIP load model. The authors of this paper has been
unable to find similar equation in the literature. Furthermore,
case study results are analysed to compare the accuracy of
the presented equation with the equation presented in [3]. In
addition, the results of the analytical equations are compared to
load models, which are estimated directly from the measured
data. The presented equation provides a quick and simple way
to assess how the apparent ZIP load characteristic is affected



by the penetration level of DG.

The introduction section of this paper is followed by four
main sections. In Section II, estimated ZIP and used ex-
ponential load model are described. Additionally, the used
measurement data processing methodology is introduced. A
new equation is presented for calculating the ZIP load model
of an aggregate of load and DG. The conducted case study
is described in Section III. The results of the case study and
discussion of the results is presented in Section IV. The main
results of the paper are summarised in Section V.

II. THEORETICAL BACKGROUND

A. Measurement Data Pre-processing

The voltage events are detected by the same algorithm as is
used in [21]-[23]. The averages of two consecutive sets of n
samples are used for calculating the voltage change (1). In [22]
the averaging window length of 20 seconds is used. However,
in this paper, n value corresponding to 40 seconds is chosen
based on event detection results. The same value is used in
[21].

Vold/n - Vnew/n

AV =
Void/n

-100% (1)

where V14 and V,,¢,, are the sum of n old and n new samples,
respectively, and n is the length of the averaging window.

Next, the calculated values of AV are compared to a chosen
event threshold value. According to [24] and [25] voltage
changes of 0.5% can be used for load model estimation. In
this case study, on-load tap changer (OLTC) with 1.78% step
was used. For this reason, 1.5% voltage threshold is suitable
for induced event detection. An event is detected if AV is
larger than the threshold value. The start of the detected event
is the first sample of the second vector V,,cq,.

B. Exponential Load Model and Second Order Polynomial
(ZIP) Load Model

The exponential load model is described by static charac-
teristic (2).

Prxp = Py(V/Vy)Xr 2

where Py is load at pre-event voltage V. Exponent K,
describes the static voltage characteristic of the load.

The second order polynomial load model, ZIP load model,
can be described by (3). The ZIP models include three com-
ponents: K. with power proportional to the square of voltage
(constant impedance); K,,; with power proportional to voltage
(constant current); K, with constant power (independent of
voltage).

P = Poy(Kpu(V/Vo)? + K (V/Vo) + Kpp)  3)
where V) corresponds to the initial voltage and Fy to initial
load power.

C. Load Model Estimation

The load model estimation is conducted by minimising
the mean square error (5) between estimated ZIP model
Proder and measured data P,,.,s. The minimisation problem
is formulated by objective (4). The described non-linear least
squares (NLS) formulation of the estimation problem is a
common solution. It is used for example in [21], [23], [24],
[26]-[28]. The performance of the NLS algorithm is compared
with Genetic Algorithm and Simulated Annealing in [28],
where it is shown that the NLS algorithm provides lower
computational load and good solutions compared to the other
2 algorithms.

N
. 1 2
min M SE = min N Zl(Pmodeli - Pmeasi) (4)

The following model equation and boundary conditions are
used for (4).

. Pmodeli = PO(sz(Vi/VO)Z + sz(Vz/Vo) + Kpp)

o K.+ Kpi +Kpp=1

e —20.0 < K, <20.0

e —20.0 < K,; £20.0

e —20.0 < K, <20.0

D. Estimation Error

In paper [21] the estimation error is quantified by Mean
Absolute Error (MAE) (5) and Mean Square Error (MSE)
(6). To enable error comparison of the two papers, the same
measures of error are used in this paper. In case of both, MAE
and MSE, the error calculation is done based on measurement
samples P,,cqs; and modelled values P,,,q4c1;, Where ¢ is the
index of the sample from 1...V.

N
1
MAE = — Prrodeti — Preasi 5
N;‘ del | (&)
1N
MSE = — " (Prodeti — Prmeasi)? 6
S N;( del casi) 6)

E. Expected Impact of Distributed Generation on Voltage
Sensitivity

The DG connected to the feeder decreases the power
supplied by the transformer Pr and the pre-event load of the
transformer Prg. When a voltage change takes place, the load
Pr reacts and obtains value Pr. Assuming the impact of DG
on losses to be negligible and voltage changes to be relatively
small, the load response can be approximated by the voltage
sensitivity of the load. In case of ZIP model (3), the voltage
sensitivity of the load is (7) [29].

%:2~sz+Km @)

In papers [3], [12] equations are derived for approximating
the impact of DG on apparent aggregated exponential load
model. The exponent of the load model K, (approximately



equivalent to voltage sensitivity of the load [3], [12]) is
determined to be (8).

AP/PO PL
Kpy = pv,L m

AV/Vy
where K, 1, is voltage sensitivity/exponent of the load model
(without DG), Py, is the load power, and P is the total output
power of the DG.

Applying a similar approach on (7), it is possible to derive
(9). This equation has multiple solutions. In this paper, solution
given by (10) is applied and error is calculated.

®)

P,
2 Kpor + Kpir = 5 (2- Kpot, + Kpit)  9)
P, — Pg
Py,
Ky.r= m Ky 1
Kyp=—%X K, (10
pi,T PL _ PG pi, L

Kppr =1—Kpir — Kpr

If the penetration level of DG is described by factor 5 =
Pg /Py, (used in [30]), the fraction (Pr)/(Pr — Pg) in (8),
(9), (10) may also be replaced by fraction 1/(1 — j3).

III. CASE STUDY
A. Measured Distribution Network and Measurement System

A power quality monitor (PQM) was installed at a medium
voltage substation to measure three phase RMS values of
voltage, active power and reactive power with a sampling rate
of 5 Hz (time-step 200 ms). The measurement probes were
connected to the voltage transformer (VT) of the measured
section and to the current transformer (CT) of the transformer
feeder. In addition, the SCADA measurements were used for
obtaining the output power of the distributed generation units.

The measured distribution network feeders supply 13 755
customers, which consumed during the measured period on
average 7.4 MW. The load consisted mainly from residential
(1/3), commercial (1/3) customers, and industrial (1/5) cus-
tomers. There is 6.7 MW of DG connected to the feeders: 2
wind turbines (2.0 MW and 2.3 MW) and a 2.4 MW combined
heat and power plant (CHP). The DG units were operated in
fixed cos¢ mode.

B. Induced Voltage Changes

An OLTC was used for inducing 6 voltage changes that
were used for load model estimation by measurement-based
approach. The used OLTC has 16 tap positions with 1.78%
steps. During the study, the voltage was kept in range 10.2
... 10.8 kV to stay within boundaries set by the DSO. Fig. 1
displays the induced voltage changes (induced changes are
marked in the figure by numbers from 1 to 6). Normal voltage
level is used at the beginning and end of the study. The 1% and
the 6! voltage change correspond to one tap position change,
and the 2" to 5™ change to three taps. After switching the
OLTC, the voltage levels were held for 10...15 minutes to
detect possible longer term dynamics of load responses.

Voltage (kV)

13:45 14:00 14:15
Time Mar 05, 2017
Fig. 1. Average RMS voltage at measured substation.

13:00 13:15 13:30

C. Measured Power

Fig. 2 displays the measured power values. The induced
voltage events are marked on the figure with numbers from 1
to 6. In addition to the induced voltage changes introduced in
Section III-B, one of the wind turbines reacted to the voltage
changes with time delay, causing changes in generated power.
The wind turbine responses are marked in Fig. 2 by letters a,
b, ¢, and d. At a and ¢ (Fig. 2) the wind turbine disconnects,
and reconnects at b and d. This causes similar power changes
with opposite direction in the transformer load Pr,qy,. The
load power Pp,.q includes peaks near the changes of the total
output of generators Pg.,, (marked in Fig. 2 by a, b, ¢, and d)
due to sampling rate mismatch of the SCADA (lower sampling
rate) and PQM (higher sampling rate) measurements.

8 -
Sof
o]
£3
24t
)
2
31
<,| ]
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Time Mar 05, 2017

Fig. 2. Power consumed by the consumers and losses Py 44, load of the
transformer Pr,.q, and total generated power Pgep,.

IV. RESULTS AND ANALYSIS

The load models of the connected load (consumed by
consumers and system losses), and aggregated transformer
load (includes connected load and distributed generation) were
estimated for each induced voltage disturbance. The estimated
ZIP models, and event modelling error of the estimated model
are presented in Table I. According to the estimation error
values (MAE and MSE), the models have a better fit for event
1, 5, and 6, compared to events 2...4. Mostly (in case of 5 out



TABLE 1
ESTIMATED ZIP LOAD MODELS

Load

Transformer Load

Event K. Kpir Kppr MSE(-1073) MAE

Kp.w Kpir Kppr MSE ((1072) MAE

1

2
3
4
5
6

0.38
-8.32
4.71
10.49
1.32
2.07

-0.02
17.66
-8.77
-20.00
-2.05
-3.09

0.65
-8.33
5.06
10.51
1.73
2.02

0.19

32.43

7.85

40.50

0.30
0.17

0.010
0.122
0.074
0.170
0.014
0.011

431
-8.69
-5.36
10.83
-2.46

4.61

-3.40
20.00
20.00

-20.00

13.61

-1.44

-1
-1

1
-1

0.09
0.31
3.64
0.17
0.15

-2.17

1.87
4.82
10.03
3.76
6.67
0.47

0.10
0.16
0.26
0.16
0.20
0.05

of 6 events), the purely load fitted better with ZIP model than
the measured transformer load.

In [21] the same measurement data was analysed and expo-
nential load models were estimated based on each event. Ta-
ble II depicts the acquired results. Compared to the estimated
ZIP models shown in Table I more consistent estimation errors
can be observed in Table II. The estimated models of the 1%
event have nearly identical estimation error, while the largest
differences occur for events 2...4. Mostly, the estimation error
of estimated ZIP models is higher in Table I than estimation
error of exponential models in Table II. All the MSE values
and 10 out of 12 MAE values are higher for ZIP models
compared to exponential models. These results indicate a
better fit of estimated exponential models compared to the
estimated ZIP models. This result is contradicting to the results
of [13], where it was found that ZIP models could be more
accurate.

TABLE II
ESTIMATED EXPONENTIAL LOAD MODELS [21]

Load Transformer Load
Event Kp,,;, MSE ((107°) MAE K,,r MSE (107%) MAE
1 0.74 17 0.011 5.11 19 0.105
2 1.24 10 0.008 292 1.9 0.034
3 0.79 14 0.009  8.11 14 0.093
4 0.62 9.9 0.008 1.30 13 0.030
5 0.65 8.1 0.008  7.64 11 0.084
6 1.03 47 0.006  8.15 35 0.046

The estimated models of the 1% event have nearly identical
estimation error in Table I and Table II. This means that
both ZIP and exponential model should be able to model this
voltage change with similar accuracy. As the load models have
similar fit, this event is valuable for comparing how well (8)
and (10) can predict the apparent transformer load, based on
the load model of the aggregate of the connected loads and the
total output power of the DG units. The calculated transformer
load models (calculated by using (8) and (10)) display a similar
estimation error in Table III. Furthermore, the event modelling
error is comparable to the estimated transformer load model
errors of Table I and Table II. This indicates that (8) and (10)
can be used for assessing the impact of DG on exponential
and ZIP model, respectively. However, the rest of the errors
of calculated ZIP load models in Table III indicate that the

result is as good as the estimated models of the connected
loads (without DG): if the estimated load models have high
error (as in case of 2™ to 4™ event), the calculated value based
on these will also have a high modelling error. The errors of
exponential load model have more consistent values also in
Table III, all with comparable errors to the estimated load
models of transformer load (Table II).

TABLE III
TRANSFORMER LOAD MODELLING BY CALCULATED LOAD MODEL
(BASED ON DG PENETRATION AND THE MODEL OF THE CONNECTED

LoAD)

1P Exponential
Event MSE MAE MSE MAE
10020 011 0.019 0.11

2 0286 036 0.002 0.03

3 1156 076  0.018 0.10
4 0160 035 0.001 0.03

5 0.019 0.11 0.015 0.10
6 0.004 0.05 0.004 0.05

V. CONCLUSION

This paper presented the results of a case study, which
was conducted in a medium voltage distribution system with
high penetration of distributed generation. The objective of
the case study was to assess how the penetration of DG
affects the estimated static load models of the aggregate
load of the transformer. Voltage disturbances were induced
by on-load tap changer to estimate the load models for the
bus load by measurement-based load modelling approach.
The load models were estimated for both, the aggregate
of the connected loads (consumers and system losses) and
transformer load (combination of aggregated loads and
distributed generation). The estimation error of exponential
and ZIP model was compared. The exponential load model
displayed lower and more consistent estimation error than
the ZIP model. Thus, in this case study the exponential load
model was more suitable for modelling the loads. An equation
was presented in this paper for describing the impact of DG
on the ZIP load model (which describes an aggregated load
that includes DG). The transformer net load models were
calculated by using the presented equation, load model of
the aggregated load (sum of consumers and system losses),



and the output of DG. The calculated values of the load
models displayed similar accuracy to the estimated models.
Thus, the derived equation was suitable for describing the
impact of DG on ZIP load models. Similar results were
achieved for equation that can be used for calculating the
exponential load model of transformer load (that includes DG).
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